Page 44 - 《精细化工》2022年第8期
P. 44

·1544·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 electrosynthesis:  Advancements, sustainability and  economic   [22]  JOURDIN L, FREGUIA S, DONOSE B C,  et al.  A novel carbon
                 feasibility"[J]. Journal of CO 2 Utilization, 2017, 22: 390-399.     nanotube modified  scaffold as an efficient biocathode material for
            [4]   KARTHIKEYAN R, WANG B, XUAN J, et al. Interfacial electron   improved microbial electrosynthesis[J]. Journal of  Materials
                 transfer and bioelectrocatalysis of carbonized plant material as   Chemistry A, 2014, 2: 13093-13102.
                 effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015,   [23]  JOURDIN  L, GRIEGER  T, MONETTI J,  et al. High acetic acid
                 157: 314-323.                                     production rate obtained by microbial electrosynthesis from  carbon
            [5]   BLANCHET  E, DUQUENNE F, RAFRAF Y,  et al. Importance of   dioxide[J]. Environmental Science & Technology, 2015, 49(22):
                 the hydrogen route in up-scaling electrosynthesis for microbial CO 2   13566-13574.
                 reduction[J]. Energy & Environmental Science: EES, 2015, 8(12):   [24]  JOURDIN L, YANG L U, FLEXER V,  et al. Biologically induced
                 3731-3744.                                        hydrogen  production  drives high rate/high efficiency microbial
            [6]   TREMBLAY P L, ANGENENT  L T, ZHANG T.Extracellular   electrosynthesis of acetate from carbon dioxide[J]. ChemElectroChem,
                 electron uptake: Among autotrophs and mediated  by surfaces[J].   2016, 3: 581-591.
                 Trends in Biotechnology, 2017, 35(4): 360-371.   [25]  MOHANAKRISHNA G, SEELAM J S, VANBROEKHOVEN  K,
            [7]   HARRINGTON  T D,  TRAN  V N, MOHAMED A,  et al. The   et al. An enriched electroactive homoacetogenic biocathode for the
                 mechanism of neutral redmediated  microbial electrosynthesis in   microbial electrosynthesis of acetate through carbon dioxide
                 Escherichia coli: Menaquinone reduction[J]. Bioresour Technol,   reduction[J]. Faraday Discussions, 2015, 183: 445-462.
                 2015, 192: 689-695.                           [26]  LIU C, GALLAGHER J J, SAKIMOTO K K,  et al. Nanowire-
            [8]   STEINBUSCH K J J, HAMELERS H V M, SCHAAP J D,  et al.   bacteria hybrids for  unassisted  solar carbon  dioxide fixation to
                 Bioelectrochemical ethanol  production through mediated acetate   value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639.
                 reduction by mixed cultures[J]. Environ  Sci Technol, 2010, 44:   [27]  JEONG H  E, KIM I, KARAM P,  et al. Bacterial recognition of
                 513-517.                                          silicon nanowire arrays[J]. Nano Letters, 2013, 13(6): 2864-2869.
            [9]   THRASH J C, VANTRUMP J I, WEBER K A, et al. Electrochemical   [28]  LI P Z, WANG X J, LIU J, et al. A triazole-containing metal-organic
                 stimulation of microbial perchlorate reduction[J]. Environ Sci   framework as a highly effective and substrate size-dependent catalyst
                 Technol, 2007, 41: 1740-1746.                     for CO 2  conversion[J]. Journal of the American Chemical Society,
            [10]  ARYAL N, HALDER A,  TREMBLAY P L,  et al. Enhanced   2016, 138(7): 2142-2145.
                 microbial  electrosynthesis  with  three-dimensional  graphene  [29]  BROWN  A J, BRUNELLI N A,  EUM K,  et al. Interfacial
                 functionalized cathodes fabricated  via  solvothermal synthesis[J].   microfluidic processing of metal-organic framework hollow fiber
                 Electrochimica Acta, 2016, 217: 117-122.          membranes[J]. Science, 2014, 345(6192): 72-75.
            [11]  LOHNER S  T,  DEUTZMANN J S, LOGAN B E,  et al.   [30]  MAHMOOD A,  GUO W H,  TABASSUM H,  et al. Metal-organic
                 Hydrogenase-independent uptake and metabolism of electrons by the   framework-based nanomaterials for electrocatalysis[J]. Advanced
                 archaeon Methanococcus maripaludis[J]. The ISME Journal, 2014,   Energy Materials, 2016, 6(17): 1600423.
                 8(8): 1673-1681.                              [31]  SCHROTT  G D, ORDONEZ M  V, ROBUSCHI L,  et al.
            [12]  YAMADA  C,  KATO S, UENO Y,  et al. Conductive iron oxides   Physiological stratification in electricity-producing  biofilms of
                 accelerate thermophilic methanogenesis from acetate   and   geobacter sulfurreducens[J]. ChemSusChem, 2014, 7(2): 598-603.
                 propionate[J]. Journal of Bioscience and Bioengineering, 2015,   [32]  WU L, LIU J Q, HUA S, et al. Capture CO 2 from N 2 and CH 4 by
                 119(6): 678-682.                                  zeolite L with different crystal  morphology[J]. Microporous and
            [13]  CAVALCANE W  D A, LEITAO R C,  GEHRING T A,  et al.   Mesoporous Materials, 2021, 316(4): 110956.
                 Anaerobic fermentation for n-caproic acid production: A review[J].   [33]  DAVARPANAH  E, ARMANDI M, HERNANDEZ S,  et al. CO 2
                 Process Biochemistry, 2017, 54: 106-119.          capture on natural zeolite clinoptilolite: Effect of temperature and
            [14]  ROGHAIR M, HOOGSTAD T, STRIK D, et al. Controlling ethanol   role of the adsorption sites[J].  Journal  of Environmental
                 use in chain elongation by CO 2 loading rate[J]. Environmental   Management, 2020, 275: 111229.
                 Science & Technology, 2018, 52(3): 1496-1505.     [34]  YANG H Y, WANG Y X, HE C S, et al. Redox mediator-modified
            [15]  VALERIA A, ANNIKA L, BETTINA B, et al. Electrophysiology of   biocathode enables highly efficient  microbial electro-synthesis  of
                 the facultative autotrophic  bacterium Desulfosporosinus  orientis[J].   methane from carbon dioxide[J]. Applied Energy, 2020, 274: 115292.
                 Frontiers in Bioengineering and Biotechnology, 2020, 8: 457.     [35]  ENZMAN F, HOLTMAN D. Rational scale-up of a methane
            [16]  WU Q L, BAO X, GUO W Q, et al. Medium chain carboxylic acids   producing bioelectrochemical reactor to 50 L pilot scale[J]. Chemical
                 production  from  waste  biomass:  Current  advances  and  Engineering Science, 2019, 207: 1148-1158.
                 perspectives[J]. Biotechnology Advances, 2019, 37(5): 599-615.     [36]  LE Q A T, KIM H G, KIM Y H. Electrochemical synthesis of formic
            [17]  HAN W H, HE P J, SHAO L M, et al. Metabolic interactions of a   acid from CO 2 catalyzed by Shewanella oneidensis MR-1 whole-cell
                 chain elongation  microbiome[J].  Applied and Environmental   biocatalyst[J]. Enzyme and Microbial Technology, 2018, 116: 1-5.
                 Microbiology, 2018, 84(22): e01614.           [37]  YU L P, YUAN  Y, TANG J H,  et al. Thermophilic  Moorella
            [18]  ZHOU L, JIN  Y Q,  WU  X,  et al. Advances in microbial   thermoautotrophica-immobilized  cathode  enhanced  microbial
                 electrosynthesis for CO 2  conversion boosted by bioengineering[J].   electrosynthesis  of  acetate  and  formate  from  CO 2[J].
                 Journal of Microbiology, 2019, 39(3): 95-104.     Bioelectrochemistry, 2017, 117: 23-28.
            [19]  ARYAL N, AMMAM F, PATIL S A, et al. An overview of cathode   [38]  LUO J Q, MEYER A S, MATEIU R V, et al. Cascade catalysis in
                 materials for microbial electrosynthesis of chemicals from  carbon   membranes with enzyme immobilization for multi-enzymatic
                 dioxide[J]. Green Chemistry, 2017, 19(24): 5748-5760.     conversion of CO 2 to methanol[J]. New Biotechnology, 2015, 32(3):
            [20]  NEVIN K P, WOODARD  T L, FRANKS A E,  et al. Microbial   319-327.
                 electrosynthesis: Feeding microbes electricity to convert carbon   [39]  JOURDIN L, FREGUIA S, FLEXER V,  et al. Bringing high-rate,
                 dioxide  and  water  to  multicarbon  extracellular  organic  CO 2-based  microbial  electrosynthesis  closer  to  practical
                 compounds[J]. MBio, 2010, 1(2): e00103.           implementation through improved electrode design and operating
            [21]  ZHANG T, NIE H, BAIN T S, et al. Improved cathode materials for   conditions[J]. Environmental Science & Technology, 2016, 50(4):
                 microbial electrosynthesis[J]. Energy &Environmental Science: EES,   1982-1989.
                 2013, 6(1): 217-224.                          [40]  JOURDIN L, RAES S M T, BUISMAN C J N, et al. Critical biofilm
   39   40   41   42   43   44   45   46   47   48   49