Page 44 - 《精细化工》2022年第8期
P. 44
·1544· 精细化工 FINE CHEMICALS 第 39 卷
electrosynthesis: Advancements, sustainability and economic [22] JOURDIN L, FREGUIA S, DONOSE B C, et al. A novel carbon
feasibility"[J]. Journal of CO 2 Utilization, 2017, 22: 390-399. nanotube modified scaffold as an efficient biocathode material for
[4] KARTHIKEYAN R, WANG B, XUAN J, et al. Interfacial electron improved microbial electrosynthesis[J]. Journal of Materials
transfer and bioelectrocatalysis of carbonized plant material as Chemistry A, 2014, 2: 13093-13102.
effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, [23] JOURDIN L, GRIEGER T, MONETTI J, et al. High acetic acid
157: 314-323. production rate obtained by microbial electrosynthesis from carbon
[5] BLANCHET E, DUQUENNE F, RAFRAF Y, et al. Importance of dioxide[J]. Environmental Science & Technology, 2015, 49(22):
the hydrogen route in up-scaling electrosynthesis for microbial CO 2 13566-13574.
reduction[J]. Energy & Environmental Science: EES, 2015, 8(12): [24] JOURDIN L, YANG L U, FLEXER V, et al. Biologically induced
3731-3744. hydrogen production drives high rate/high efficiency microbial
[6] TREMBLAY P L, ANGENENT L T, ZHANG T.Extracellular electrosynthesis of acetate from carbon dioxide[J]. ChemElectroChem,
electron uptake: Among autotrophs and mediated by surfaces[J]. 2016, 3: 581-591.
Trends in Biotechnology, 2017, 35(4): 360-371. [25] MOHANAKRISHNA G, SEELAM J S, VANBROEKHOVEN K,
[7] HARRINGTON T D, TRAN V N, MOHAMED A, et al. The et al. An enriched electroactive homoacetogenic biocathode for the
mechanism of neutral redmediated microbial electrosynthesis in microbial electrosynthesis of acetate through carbon dioxide
Escherichia coli: Menaquinone reduction[J]. Bioresour Technol, reduction[J]. Faraday Discussions, 2015, 183: 445-462.
2015, 192: 689-695. [26] LIU C, GALLAGHER J J, SAKIMOTO K K, et al. Nanowire-
[8] STEINBUSCH K J J, HAMELERS H V M, SCHAAP J D, et al. bacteria hybrids for unassisted solar carbon dioxide fixation to
Bioelectrochemical ethanol production through mediated acetate value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639.
reduction by mixed cultures[J]. Environ Sci Technol, 2010, 44: [27] JEONG H E, KIM I, KARAM P, et al. Bacterial recognition of
513-517. silicon nanowire arrays[J]. Nano Letters, 2013, 13(6): 2864-2869.
[9] THRASH J C, VANTRUMP J I, WEBER K A, et al. Electrochemical [28] LI P Z, WANG X J, LIU J, et al. A triazole-containing metal-organic
stimulation of microbial perchlorate reduction[J]. Environ Sci framework as a highly effective and substrate size-dependent catalyst
Technol, 2007, 41: 1740-1746. for CO 2 conversion[J]. Journal of the American Chemical Society,
[10] ARYAL N, HALDER A, TREMBLAY P L, et al. Enhanced 2016, 138(7): 2142-2145.
microbial electrosynthesis with three-dimensional graphene [29] BROWN A J, BRUNELLI N A, EUM K, et al. Interfacial
functionalized cathodes fabricated via solvothermal synthesis[J]. microfluidic processing of metal-organic framework hollow fiber
Electrochimica Acta, 2016, 217: 117-122. membranes[J]. Science, 2014, 345(6192): 72-75.
[11] LOHNER S T, DEUTZMANN J S, LOGAN B E, et al. [30] MAHMOOD A, GUO W H, TABASSUM H, et al. Metal-organic
Hydrogenase-independent uptake and metabolism of electrons by the framework-based nanomaterials for electrocatalysis[J]. Advanced
archaeon Methanococcus maripaludis[J]. The ISME Journal, 2014, Energy Materials, 2016, 6(17): 1600423.
8(8): 1673-1681. [31] SCHROTT G D, ORDONEZ M V, ROBUSCHI L, et al.
[12] YAMADA C, KATO S, UENO Y, et al. Conductive iron oxides Physiological stratification in electricity-producing biofilms of
accelerate thermophilic methanogenesis from acetate and geobacter sulfurreducens[J]. ChemSusChem, 2014, 7(2): 598-603.
propionate[J]. Journal of Bioscience and Bioengineering, 2015, [32] WU L, LIU J Q, HUA S, et al. Capture CO 2 from N 2 and CH 4 by
119(6): 678-682. zeolite L with different crystal morphology[J]. Microporous and
[13] CAVALCANE W D A, LEITAO R C, GEHRING T A, et al. Mesoporous Materials, 2021, 316(4): 110956.
Anaerobic fermentation for n-caproic acid production: A review[J]. [33] DAVARPANAH E, ARMANDI M, HERNANDEZ S, et al. CO 2
Process Biochemistry, 2017, 54: 106-119. capture on natural zeolite clinoptilolite: Effect of temperature and
[14] ROGHAIR M, HOOGSTAD T, STRIK D, et al. Controlling ethanol role of the adsorption sites[J]. Journal of Environmental
use in chain elongation by CO 2 loading rate[J]. Environmental Management, 2020, 275: 111229.
Science & Technology, 2018, 52(3): 1496-1505. [34] YANG H Y, WANG Y X, HE C S, et al. Redox mediator-modified
[15] VALERIA A, ANNIKA L, BETTINA B, et al. Electrophysiology of biocathode enables highly efficient microbial electro-synthesis of
the facultative autotrophic bacterium Desulfosporosinus orientis[J]. methane from carbon dioxide[J]. Applied Energy, 2020, 274: 115292.
Frontiers in Bioengineering and Biotechnology, 2020, 8: 457. [35] ENZMAN F, HOLTMAN D. Rational scale-up of a methane
[16] WU Q L, BAO X, GUO W Q, et al. Medium chain carboxylic acids producing bioelectrochemical reactor to 50 L pilot scale[J]. Chemical
production from waste biomass: Current advances and Engineering Science, 2019, 207: 1148-1158.
perspectives[J]. Biotechnology Advances, 2019, 37(5): 599-615. [36] LE Q A T, KIM H G, KIM Y H. Electrochemical synthesis of formic
[17] HAN W H, HE P J, SHAO L M, et al. Metabolic interactions of a acid from CO 2 catalyzed by Shewanella oneidensis MR-1 whole-cell
chain elongation microbiome[J]. Applied and Environmental biocatalyst[J]. Enzyme and Microbial Technology, 2018, 116: 1-5.
Microbiology, 2018, 84(22): e01614. [37] YU L P, YUAN Y, TANG J H, et al. Thermophilic Moorella
[18] ZHOU L, JIN Y Q, WU X, et al. Advances in microbial thermoautotrophica-immobilized cathode enhanced microbial
electrosynthesis for CO 2 conversion boosted by bioengineering[J]. electrosynthesis of acetate and formate from CO 2[J].
Journal of Microbiology, 2019, 39(3): 95-104. Bioelectrochemistry, 2017, 117: 23-28.
[19] ARYAL N, AMMAM F, PATIL S A, et al. An overview of cathode [38] LUO J Q, MEYER A S, MATEIU R V, et al. Cascade catalysis in
materials for microbial electrosynthesis of chemicals from carbon membranes with enzyme immobilization for multi-enzymatic
dioxide[J]. Green Chemistry, 2017, 19(24): 5748-5760. conversion of CO 2 to methanol[J]. New Biotechnology, 2015, 32(3):
[20] NEVIN K P, WOODARD T L, FRANKS A E, et al. Microbial 319-327.
electrosynthesis: Feeding microbes electricity to convert carbon [39] JOURDIN L, FREGUIA S, FLEXER V, et al. Bringing high-rate,
dioxide and water to multicarbon extracellular organic CO 2-based microbial electrosynthesis closer to practical
compounds[J]. MBio, 2010, 1(2): e00103. implementation through improved electrode design and operating
[21] ZHANG T, NIE H, BAIN T S, et al. Improved cathode materials for conditions[J]. Environmental Science & Technology, 2016, 50(4):
microbial electrosynthesis[J]. Energy &Environmental Science: EES, 1982-1989.
2013, 6(1): 217-224. [40] JOURDIN L, RAES S M T, BUISMAN C J N, et al. Critical biofilm