Page 55 - 《精细化工》2022年第8期
P. 55

第 8 期                   张   敏,等:  微生物燃料电池纳米纤维基阳极材料的研究进展                                 ·1555·


            工艺更加有效和高效。目前,已有的耦合技术有微                             [9]   SANTORO C, ARBIZZANI  C, ERABLE B,  et al. Microbial fuel
            生物电解池、人工湿地、厌氧/好氧生物接触氧化工                                cells: From fundamentals to applications[J]. Journal of Power Sources,
                                                                   2017, 356: 225-244.
            艺、超级电容器、光催化等,应进一步提高耦合系                             [10]  YOU S, MA M, WANG W, et al. 3D Macroporous nitrogen-enriched
            统中 MFC 与相关技术中电能的转化、利用效率以及                              graphitic carbon scaffold for efficient bioelectricity generation in
            优化 MFC 处理实际废水的操作参数,以达到商业化                              microbial fuel cells[J]. Advanced Energy Materials, 2016, 7: 1-3.
                                                               [11]  SINGH S, VERMA N. Fabrication  of Ni  nanoparticles dispersed
            应用。                                                    carbon micro-nanofibers as the electrodes of a microbial fuel cell for
                (4)防止质子交换膜污染。质子交换膜生物污                              bio-energy production[J]. International Journal of Hydrogen Energy,
            染会引起性能的恶化,因此,需要采用适当的方法                                 2015, 40: 1145-1153.
                                                               [12]  POTTER M C. Electrical effects accompanying the decomposition of
            来防止质子交换膜的生物污染。                                         organic compounds[J]. Proceedings of the Royal Society of London,
                (5)结合其他处理方向。目前,MFC 的应用主                            1911, 84(571): 260-276.
            要集中在废水处理方面,为拓展 MFC 在其他领域内                          [13]  COHEN B. The bacterial culture as an electrical half-cell[J]. Journal
                                                                   of Bacteriology, 1931, 21(1): 18-19.
            的应用,MFC 也可与固体废物、空气污染物的处理
                                                               [14]  KIM B. Dynamic effects of learning capabilities and profit structures
            相结合,助力“碳达峰、碳中和”目标。                                     on the innovation competition[J]. Optimal Control Applications and
                (6)与新兴污染物结合。目前,MFC 处理的污                            Methods, 1999, 20(3): 127-144.
                                                               [15]  SLATE A J, WHITEHEAD K A, BROWNSON D A C, et al. Microbial
            染物大多是具有最佳浓度的模型污染物,并且仍然存
                                                                   fuel cells: An overview of current technology[J]. Renewable  and
            在对高浓度的抗生素污染物无法有效处理的弊端                      [75] 。      Sustainable Energy Reviews, 2019, 101: 60-81.
            另外,去除水中的新型污染物——微塑料、纳米塑                             [16]  SONG X R, JO C H, HAN L J, et al. Recent advance in microbial
                                                                   fuel cell reactor configuration and coupling technologies for removal
            料是一个热门研究方向,以往对微塑料和纳米塑料
                                                                   of antibiotic pollutants[J]. Current Opinion in Electrochemistry, 2021,
            的处理工艺主要集中在过滤、混凝、膜生物反应器                                 31(1): 1-5.
            和光催化等,没有观察到 MFC 去除微塑料、纳米塑                          [17]  SURESH R, RAJENDRAN S, KUMAR S P, et al. Current advances
            料的性能     [76] 。而从生物工程的角度而言,近年来的                        in microbial fuel cell technology toward removal of organic
                                                                   contaminants[J]. Chemosphere, 2021, 287(2): 1-4.
            研究结果表明,利用选定的微生物菌株能够对塑料                             [18]  JIANG D, LI B. Novel electrode materials to enhance the bacterial
            进行降解     [77-78] 。在这种背景下,为消除以上限制同                      adhesion and increase the power generation in microbial fuel cells
                                                                   (MFCs)[J]. Water Science & Technology, 2009, 59(3): 557-563.
            时进一步开发 MFC 处理各种污染物的潜力,将 MFC
                                                               [19]  KARRA U, MANICKAM S S, MCCUTCHEON J R, et al. Power
            与微塑料或纳米塑料的结合将可能是未来的新兴研                                 generation and organics removal from wastewater using activated
            究方向。                                                   carbon nanofiber (ACNF) microbial fuel cells[J]. International Journal
                                                                   of Hydrogen Energy, 2013, 38(3): 1588-1597.
            参考文献:                                              [20]  LOU X G, LIU Z  L, HOU J X,  et al. Modification  of the anodes
                                                                   using MoS 2 nanoflowers for improving microbial fuel cells
            [1]   LI S, CHENG C,  THOMAS  A.  Carbon-based microbial-fuel-cell
                                                                   performance[J]. Catalysis Today, 2021, 364: 111-117.
                 electrodes: From conductive supports to active catalysts[J]. Advanced
                                                               [21]  ZHANG  L J, HE W H,  YANG J  C,  et al. Bread-derived  3D
                 Materials, 2017, 29(8): 1-10.
                                                                   macroporous carbon foams as high performance free-standing anode
            [2]   SANCHEZ J L, PINTO D,  LABERTY-ROBERT C. Electrospun
                                                                   in microbial fuel cells[J]. Biosensors  & Bioelectronics, 2018, 122:
                 carbon fibers for microbial fuel cells: A novel bioanode design applied
                                                                   217-223.
                 to wastewater treatment[J]. Electrochimica Acta, 2021, 373: 1-9.
                                                               [22]  BIAN B, SHI D, CAI X B, et al. 3D printed porous carbon anode for
            [3]   SONAWANE J M, YADAV A, GHOSH P C, et al. Recent advances   enhanced power generation in microbial fuel cell[J]. Nano Energy,
                 in the development and utilization of modern anode  materials for
                                                                   2017, 44: 174-180.
                 high performance microbial fuel cells[J]. Biosensors & Bioelectronics,   [23]  YASRI N G, NAKHIA G. The performance of 3D graphite doped
                 2017, 90: 558-576.                                anodes in microbial electrolysis cells[J]. Journal of Power Sources,
            [4]   BALAT M. Microbial fuel cells as an alternative energy option[J].   2017, 342(28): 579-588.
                 Energy Sources, 2009, 32(1): 26-35.           [24]  KIM H, KIM M C, KIM S B, et al. Porous SnO 2 nanostructure with a
            [5]   MANICKAM S S, KARRA U, HUANG L, et al. Activated carbon   high specific surface area for improved electrochemical performance[J].
                 nanofiber anodes for microbial fuel cells[J]. Carbon, 2013, 53: 19-28.   RSC Advances, 2020, 10: 10159-10525.
            [6]   GUZMAN J, KARA M, FREY M  W,  et al. Performance of   [25]  HU M H, LIN Y Y, LI X, et al. Nano-Fe 3C@2D-NC@CC as anode
                 electrospun carbon nanofiber electrodes with conductive poly (3,4-   for improving extracellular electron transfer and electricity generation
                 ethylenedioxythiophene) coatings in bioelectrochemical systems[J].   of microbial fuel cells[J]. Electrochimica Acta, 2022, 404: 1-5.
                 Journal of Power Sources, 2017, 356(15): 331-337.   [26]  XU H T, HUANG J X, LIN C G, et al. Bio-functional metal organic
            [7]   BOAS J V, OLIVEIRA V B, SIMOES M, et al. Review on microbial   framework composite as bioanode for enhanced electricity generation
                 fuel cells applications, developments and costs[J]. Journal of   by a microbial fuel cell[J]. Electrochimica Acta, 2020, 368: 1-6.
                 Environmental Management, 2022, 307(1): 1-5.   [27]  GO D,  LOTT P, STOLLENWERK J, et al. Laser carbonization of
            [8]   LIU Y F (刘远峰), ZHANG X L (张秀玲), ZHANG Q C (张其春),   PAN-nanofiber mats with enhanced surface area and porosity[J].
                 et al. Research progress of anodic  electrogenerative bacteria in   ACS Appl Mater Interfaces, 2016, 8: 28412-28417.
                 microbial fuel cells[J]. Fine Chemicals (精细化工), 2020, 37(9):   [28]  JIANG H, YANG L, DENG W, et al. Macroporous graphitic carbon
                 1730-1736.                                        foam decorated with polydopamine as a high-performance anode for
   50   51   52   53   54   55   56   57   58   59   60