Page 55 - 《精细化工》2022年第8期
P. 55
第 8 期 张 敏,等: 微生物燃料电池纳米纤维基阳极材料的研究进展 ·1555·
工艺更加有效和高效。目前,已有的耦合技术有微 [9] SANTORO C, ARBIZZANI C, ERABLE B, et al. Microbial fuel
生物电解池、人工湿地、厌氧/好氧生物接触氧化工 cells: From fundamentals to applications[J]. Journal of Power Sources,
2017, 356: 225-244.
艺、超级电容器、光催化等,应进一步提高耦合系 [10] YOU S, MA M, WANG W, et al. 3D Macroporous nitrogen-enriched
统中 MFC 与相关技术中电能的转化、利用效率以及 graphitic carbon scaffold for efficient bioelectricity generation in
优化 MFC 处理实际废水的操作参数,以达到商业化 microbial fuel cells[J]. Advanced Energy Materials, 2016, 7: 1-3.
[11] SINGH S, VERMA N. Fabrication of Ni nanoparticles dispersed
应用。 carbon micro-nanofibers as the electrodes of a microbial fuel cell for
(4)防止质子交换膜污染。质子交换膜生物污 bio-energy production[J]. International Journal of Hydrogen Energy,
染会引起性能的恶化,因此,需要采用适当的方法 2015, 40: 1145-1153.
[12] POTTER M C. Electrical effects accompanying the decomposition of
来防止质子交换膜的生物污染。 organic compounds[J]. Proceedings of the Royal Society of London,
(5)结合其他处理方向。目前,MFC 的应用主 1911, 84(571): 260-276.
要集中在废水处理方面,为拓展 MFC 在其他领域内 [13] COHEN B. The bacterial culture as an electrical half-cell[J]. Journal
of Bacteriology, 1931, 21(1): 18-19.
的应用,MFC 也可与固体废物、空气污染物的处理
[14] KIM B. Dynamic effects of learning capabilities and profit structures
相结合,助力“碳达峰、碳中和”目标。 on the innovation competition[J]. Optimal Control Applications and
(6)与新兴污染物结合。目前,MFC 处理的污 Methods, 1999, 20(3): 127-144.
[15] SLATE A J, WHITEHEAD K A, BROWNSON D A C, et al. Microbial
染物大多是具有最佳浓度的模型污染物,并且仍然存
fuel cells: An overview of current technology[J]. Renewable and
在对高浓度的抗生素污染物无法有效处理的弊端 [75] 。 Sustainable Energy Reviews, 2019, 101: 60-81.
另外,去除水中的新型污染物——微塑料、纳米塑 [16] SONG X R, JO C H, HAN L J, et al. Recent advance in microbial
fuel cell reactor configuration and coupling technologies for removal
料是一个热门研究方向,以往对微塑料和纳米塑料
of antibiotic pollutants[J]. Current Opinion in Electrochemistry, 2021,
的处理工艺主要集中在过滤、混凝、膜生物反应器 31(1): 1-5.
和光催化等,没有观察到 MFC 去除微塑料、纳米塑 [17] SURESH R, RAJENDRAN S, KUMAR S P, et al. Current advances
料的性能 [76] 。而从生物工程的角度而言,近年来的 in microbial fuel cell technology toward removal of organic
contaminants[J]. Chemosphere, 2021, 287(2): 1-4.
研究结果表明,利用选定的微生物菌株能够对塑料 [18] JIANG D, LI B. Novel electrode materials to enhance the bacterial
进行降解 [77-78] 。在这种背景下,为消除以上限制同 adhesion and increase the power generation in microbial fuel cells
(MFCs)[J]. Water Science & Technology, 2009, 59(3): 557-563.
时进一步开发 MFC 处理各种污染物的潜力,将 MFC
[19] KARRA U, MANICKAM S S, MCCUTCHEON J R, et al. Power
与微塑料或纳米塑料的结合将可能是未来的新兴研 generation and organics removal from wastewater using activated
究方向。 carbon nanofiber (ACNF) microbial fuel cells[J]. International Journal
of Hydrogen Energy, 2013, 38(3): 1588-1597.
参考文献: [20] LOU X G, LIU Z L, HOU J X, et al. Modification of the anodes
using MoS 2 nanoflowers for improving microbial fuel cells
[1] LI S, CHENG C, THOMAS A. Carbon-based microbial-fuel-cell
performance[J]. Catalysis Today, 2021, 364: 111-117.
electrodes: From conductive supports to active catalysts[J]. Advanced
[21] ZHANG L J, HE W H, YANG J C, et al. Bread-derived 3D
Materials, 2017, 29(8): 1-10.
macroporous carbon foams as high performance free-standing anode
[2] SANCHEZ J L, PINTO D, LABERTY-ROBERT C. Electrospun
in microbial fuel cells[J]. Biosensors & Bioelectronics, 2018, 122:
carbon fibers for microbial fuel cells: A novel bioanode design applied
217-223.
to wastewater treatment[J]. Electrochimica Acta, 2021, 373: 1-9.
[22] BIAN B, SHI D, CAI X B, et al. 3D printed porous carbon anode for
[3] SONAWANE J M, YADAV A, GHOSH P C, et al. Recent advances enhanced power generation in microbial fuel cell[J]. Nano Energy,
in the development and utilization of modern anode materials for
2017, 44: 174-180.
high performance microbial fuel cells[J]. Biosensors & Bioelectronics, [23] YASRI N G, NAKHIA G. The performance of 3D graphite doped
2017, 90: 558-576. anodes in microbial electrolysis cells[J]. Journal of Power Sources,
[4] BALAT M. Microbial fuel cells as an alternative energy option[J]. 2017, 342(28): 579-588.
Energy Sources, 2009, 32(1): 26-35. [24] KIM H, KIM M C, KIM S B, et al. Porous SnO 2 nanostructure with a
[5] MANICKAM S S, KARRA U, HUANG L, et al. Activated carbon high specific surface area for improved electrochemical performance[J].
nanofiber anodes for microbial fuel cells[J]. Carbon, 2013, 53: 19-28. RSC Advances, 2020, 10: 10159-10525.
[6] GUZMAN J, KARA M, FREY M W, et al. Performance of [25] HU M H, LIN Y Y, LI X, et al. Nano-Fe 3C@2D-NC@CC as anode
electrospun carbon nanofiber electrodes with conductive poly (3,4- for improving extracellular electron transfer and electricity generation
ethylenedioxythiophene) coatings in bioelectrochemical systems[J]. of microbial fuel cells[J]. Electrochimica Acta, 2022, 404: 1-5.
Journal of Power Sources, 2017, 356(15): 331-337. [26] XU H T, HUANG J X, LIN C G, et al. Bio-functional metal organic
[7] BOAS J V, OLIVEIRA V B, SIMOES M, et al. Review on microbial framework composite as bioanode for enhanced electricity generation
fuel cells applications, developments and costs[J]. Journal of by a microbial fuel cell[J]. Electrochimica Acta, 2020, 368: 1-6.
Environmental Management, 2022, 307(1): 1-5. [27] GO D, LOTT P, STOLLENWERK J, et al. Laser carbonization of
[8] LIU Y F (刘远峰), ZHANG X L (张秀玲), ZHANG Q C (张其春), PAN-nanofiber mats with enhanced surface area and porosity[J].
et al. Research progress of anodic electrogenerative bacteria in ACS Appl Mater Interfaces, 2016, 8: 28412-28417.
microbial fuel cells[J]. Fine Chemicals (精细化工), 2020, 37(9): [28] JIANG H, YANG L, DENG W, et al. Macroporous graphitic carbon
1730-1736. foam decorated with polydopamine as a high-performance anode for