Page 57 - 《精细化工》2022年第8期
P. 57
第 8 期 张 敏,等: 微生物燃料电池纳米纤维基阳极材料的研究进展 ·1557·
composite[J]. Road Materials and Pavement Design, 2021, 23(6): PVA/PEDOT composite nanofibers films for research thermoelectric
1370-1389. performance[J]. Journal of Applied Polymer Science, 2021, 139(17):
[65] KARTHICK S, SUMISHA A, HARIBABU K. Performance of tungsten 1-14.
oxide/polypyrrole composite as cathode catalyst in single chamber [73] LIU Y F, ZHANG X L, LI H Y, et al. Porous α-Fe 2O 3 nanofiber
microbial fuel cell[J]. Journal of Environmental Chemical Engineering, combined with carbon nanotube as anode to enhance the bioelectricity
2020, 8(6): 104520-104525. generation for microbial fuel cell[J]. Electrochimica Acta, 2021, 391:
[66] LIU Y F (刘远峰), ZHANG X L (张秀玲), LI C J (李从举). 1-7.
Advances in carbon-based anode materials for microbial fuel cells[J]. [74] DAS B, SOUNDARARAJAN N, KASHYAP S P, et al.
Chinese Journal of Engineering (工程科学学报), 2020, 42(3): Bioaugmented polyaniline decorated polylactic acid nanofiber
270-277. electrode by electrospinning technique for real wastewater-fed MFC
[67] JUNG H Y, ROH S H. Carbon nanofiber/polypyrrole nanocomposite application[J]. International Journal of Energy Research, 2021, 46(3):
as anode material in microbial fuel cells[J]. Journal of Nanoscience 3588-3601.
& Nanotechnology, 2017, 17(8): 5830-5833. [75] SURESH R, RAJENDRAN S, KUMAR P S, et al. Current advances
[68] WANG H Y, WANG G M, LING Y C, et al. High power density in microbial fuel cell technology toward removal of organic
microbial fuel cell with flexible 3D graphene-nickel foam as contaminants-A review[J]. Chemosphere, 2022, 287: 5-11.
anode[J]. Nanoscale, 2013, 5(21): 10283-10290. [76] PICO Y, ALFARHAN A, BARCELO D. Nano and microplastic
[69] ZHAI D D, FANG Z, JIN H, et al. Vertical alignment of polyaniline analysis: Focus on their occurrence in freshwater ecosystems and
nanofibers on electrode surface for high performance microbial fuel remediation technologies[J]. Trends in Analytical Chemistry, 2019,
cells[J]. Bioresource Technology, 2019, 288: 1-8. 113: 410-425.
[70] WANG X X, YU G F, ZHANG J, et al. Conductive polymer ultrafine [77] PACO A, DUARTE K, COSTA D J P, et al. Biodegradation of
fibers via electrospinning: Preparation, physical properties and polyethylene microplastics by the marine fungus zalerion maritimum[J].
applications[J]. Progress in Materials Science, 2020, 115: 1-10. Science of Total Environment, 2017, 586: 10-15.
[71] WEN Q, PAN X, HU Q X, et al. Structure-property relationship of [78] ZUMSTEIN M T, RECHATEINER D, RODUNER N, et al.
dodecylbenzenesulfonic acid doped polypyrrole[J]. Synthetic Metals, Enzymatic hydrolysis of polyester thin films at the nanoscale: Effects
2013, 164: 27-31. of polyester structure and enzyme active-site accessibility[J].
[72] JIANG X Q, BAN C C, LI L, et al. Electrospinning of BCNNTs/ Environmmental Science and Technology, 2017, 51(13): 7476-7485.
(上接第 1524 页) oregano essential oil content on properties of green biocomposites
based on cassava starch and sugarcane bagasse for bioactive packaging[J].
[119] TAPIA-BLÁCIDO D R, MANIGLIA B C, MARTELLI-TOSI M, et al. Journal of Polymers and the Environment, 2018, 26(1): 311-318.
Agroindustrial biomass: Potential materials for production of [124] JANAUM N, BUTSIRI T, KASEMSIRI P, et al. Multi response
biopolymeric films[M]. Boca Raton: CRC Press, 2017. optimization of bioactive starch foam composite using Taguchi's
[120] BUCCI K, TULIO M, ROCHMAN C. What is known and unknown method and grey relational analysis[J]. Journal of Polymers and the
about the effects of plastic pollution: A meta‐analysis and Environment, 2020, 28(5): 1513-1525.
systematic review[J]. Ecological Applications, 2020, 30(2): e02044. [125] CRUZ-TIRADO J P, FERREIRA R S B, LIZARRAGA E, et al.
[121] YAO S Z (姚舜祯). Study on prepartion and properties of geopolymer- Bioactive Andean sweet potato starch-based foam incorporated with
based thermal insulation filled material filled with new form paticles oregano or thyme essential oil[J]. Food Packaging and Shelf Life,
[D]. Guilin: Guangxi Normal University (广西师范学院), 2016. 2020, 23: 100457.
[122] OLAIMAT A N, SHAHBAZ H M, FATIMA N, et al. Food safety [126] KULKARNI S A, NAGARAJAN S K, RAMESH V, et al.
during and after the era of COVID-19 pandemic[J]. Frontiers in Computational evaluation of major components from plant essential
Microbiology, 2020: 1854. oils as potent inhibitors of SARS-CoV-2 spike protein[J]. Journal of
[123] KETKAEW S, KASEMSIRI P, HIZIROGLU S, et al. Effect of Molecular Structure, 2020, 1221: 128823.
(上接第 1536 页) [97] NASU Y, SHEN Y, KRAMER L, et al. Structure- and mechanism-
guided design of single fluorescent protein-based biosensors[J].
[93] SUN M Y, HAN Y, YUAN X, et al. Efficient full-color emitting Nature Chemical Biology, 2021, 17(5): 509-518.
carbon-dot-based composite phosphors by chemical dispersion[J]. [98] ZHU L, XU L L, WANG J, et al. Macromonomer-induced CdTe
Nanoscale, 2020, 12(29): 15823-15831. quantum dots toward multicolor fluorescent patterns and white
[94] LIN S, CHEN M Y, WANG Z W, et al. Construction of full-color LEDs[J]. RSC Advances, 2012, 2(24): 9005-9010.
light-emitting N-based carbon nanodots and their efficient solid-state [99] TEICHLER A, SHU Z, WILD A, et al. Inkjet printing of chemically
materials via tape-casting technology for warm WLED[J]. Chemical tailored light-emitting polymers[J]. European Polymer Journal, 2013,
Engineering Journal, 2017, 324: 194-202. 49(8): 2186-2195.
[95] YAN F Y, SUN Z H, ZHANG H, et al. The fluorescence [100] LI M X, YAO W J, LIU J, et al. Facile synthesis and screen printing
mechanismof carbon dots, and methods for tuning their emission of dual-mode luminescent NaYF4: Er, Yb (Tm)/carbon dots for
color: A review[J]. Microchimica Acta, 2019, 186(8): 583. anti-counterfeiting applications[J]. Journal of Materials Chemistry C,
[96] HU S L, TRINCHI A, ATKIN P, et al. Tunable photoluminescence 2017, 5(26): 6512-6520.
across the entire visible spectrum from carbon dots excited by white [101] MACAIRAN J R, DE MEDEIROS T V, GAZZETTO M, et al.
light[J]. Angewandte Chemie International Edition, 2015, 54(10): Elucidating the mechanism of dual-fluorescence in carbon dots[J].
2970-2974. Journal of Colloid and Interface Science, 2021, 606(Part 1): 67-76.