Page 57 - 《精细化工》2022年第8期
P. 57

第 8 期                   张   敏,等:  微生物燃料电池纳米纤维基阳极材料的研究进展                                 ·1557·


                 composite[J]. Road Materials  and Pavement Design, 2021, 23(6):   PVA/PEDOT composite nanofibers films for research thermoelectric
                 1370-1389.                                        performance[J]. Journal of Applied Polymer Science, 2021, 139(17):
            [65]  KARTHICK S, SUMISHA A, HARIBABU K. Performance of tungsten   1-14.
                 oxide/polypyrrole composite as cathode catalyst in single chamber   [73]  LIU Y F,  ZHANG X L, LI H Y,  et al. Porous  α-Fe 2O 3 nanofiber
                 microbial fuel cell[J]. Journal of Environmental Chemical Engineering,   combined with carbon nanotube as anode to enhance the bioelectricity
                 2020, 8(6): 104520-104525.                        generation for microbial fuel cell[J]. Electrochimica Acta, 2021, 391:
            [66]  LIU  Y F (刘远峰), ZHANG X L (张秀玲),  LI C J  (李从举).   1-7.
                 Advances in carbon-based anode materials for microbial fuel cells[J].   [74]  DAS B, SOUNDARARAJAN N, KASHYAP S P,  et al.
                 Chinese Journal  of Engineering  (工程科学学报), 2020, 42(3):   Bioaugmented polyaniline decorated polylactic acid nanofiber
                 270-277.                                          electrode by electrospinning technique for real wastewater-fed MFC
            [67]  JUNG H Y, ROH S H. Carbon nanofiber/polypyrrole nanocomposite   application[J]. International Journal of Energy Research, 2021, 46(3):
                 as anode material in microbial fuel cells[J]. Journal of Nanoscience   3588-3601.
                 & Nanotechnology, 2017, 17(8): 5830-5833.     [75]  SURESH R, RAJENDRAN S, KUMAR P S, et al. Current advances
            [68]  WANG  H Y,  WANG G M, LING Y  C,  et al. High power density   in microbial fuel cell technology toward removal of organic
                 microbial fuel cell with flexible 3D graphene-nickel foam as   contaminants-A review[J]. Chemosphere, 2022, 287: 5-11.
                 anode[J]. Nanoscale, 2013, 5(21): 10283-10290.   [76]  PICO Y, ALFARHAN A, BARCELO D. Nano and  microplastic
            [69]  ZHAI D D, FANG Z, JIN H, et al. Vertical alignment of polyaniline   analysis: Focus on their occurrence in freshwater ecosystems  and
                 nanofibers on electrode surface for high performance microbial fuel   remediation technologies[J]. Trends  in  Analytical Chemistry, 2019,
                 cells[J]. Bioresource Technology, 2019, 288: 1-8.   113: 410-425.
            [70]  WANG X X, YU G F, ZHANG J, et al. Conductive polymer ultrafine   [77]  PACO  A, DUARTE K, COSTA D J P,  et al. Biodegradation of
                 fibers  via electrospinning: Preparation, physical properties and   polyethylene microplastics by the marine fungus zalerion maritimum[J].
                 applications[J]. Progress in Materials Science, 2020, 115: 1-10.   Science of Total Environment, 2017, 586: 10-15.
            [71]  WEN Q, PAN X, HU Q X, et al. Structure-property relationship of   [78]  ZUMSTEIN M T, RECHATEINER D, RODUNER  N,  et al.
                 dodecylbenzenesulfonic acid doped polypyrrole[J]. Synthetic Metals,   Enzymatic hydrolysis of polyester thin films at the nanoscale: Effects
                 2013, 164: 27-31.                                 of polyester structure and enzyme active-site accessibility[J].
            [72]  JIANG X Q, BAN C C, LI  L, et  al. Electrospinning  of  BCNNTs/   Environmmental Science and Technology, 2017, 51(13): 7476-7485.


            (上接第 1524 页)                                           oregano essential oil content on properties of green biocomposites
                                                                   based on cassava starch and sugarcane bagasse for bioactive packaging[J].
            [119]  TAPIA-BLÁCIDO D R, MANIGLIA B C, MARTELLI-TOSI M, et al.   Journal of Polymers and the Environment, 2018, 26(1): 311-318.
                 Agroindustrial biomass: Potential  materials for production of   [124]  JANAUM N, BUTSIRI T, KASEMSIRI P,  et al. Multi response
                 biopolymeric films[M]. Boca Raton: CRC Press, 2017.   optimization of  bioactive starch foam  composite using Taguchi's
            [120]  BUCCI K, TULIO M, ROCHMAN C. What is known and unknown   method and grey relational analysis[J]. Journal of Polymers and the
                 about the effects of plastic pollution: A meta‐analysis and   Environment, 2020, 28(5): 1513-1525.
                 systematic review[J]. Ecological Applications, 2020, 30(2): e02044.   [125]  CRUZ-TIRADO J  P, FERREIRA  R S B, LIZARRAGA  E,  et al.
            [121]  YAO S Z (姚舜祯). Study on prepartion and properties of geopolymer-   Bioactive Andean sweet potato starch-based foam incorporated with
                 based thermal insulation filled material filled with new form paticles   oregano or thyme  essential oil[J]. Food Packaging and Shelf Life,
                 [D]. Guilin: Guangxi Normal University (广西师范学院), 2016.   2020, 23: 100457.
            [122]  OLAIMAT A N, SHAHBAZ  H M, FATIMA  N,  et al. Food safety   [126]  KULKARNI S A, NAGARAJAN  S K, RAMESH  V,  et al.
                 during and after the era of COVID-19  pandemic[J]. Frontiers in   Computational evaluation of major components from plant essential
                 Microbiology, 2020: 1854.                         oils as potent inhibitors of SARS-CoV-2 spike protein[J]. Journal of
            [123]  KETKAEW S, KASEMSIRI P, HIZIROGLU S,  et al. Effect of   Molecular Structure, 2020, 1221: 128823.


            (上接第 1536 页)                                       [97]  NASU Y, SHEN Y, KRAMER L, et al. Structure- and mechanism-
                                                                   guided  design of single  fluorescent protein-based  biosensors[J].
            [93]  SUN M Y, HAN  Y, YUAN  X, et  al.  Efficient full-color emitting   Nature Chemical Biology, 2021, 17(5): 509-518.
                 carbon-dot-based composite phosphors by chemical dispersion[J].   [98]  ZHU L, XU L L,  WANG J, et  al.  Macromonomer-induced CdTe
                 Nanoscale, 2020, 12(29): 15823-15831.             quantum dots  toward multicolor fluorescent patterns  and white
            [94]  LIN S, CHEN M  Y, WANG  Z W, et al. Construction of full-color   LEDs[J]. RSC Advances, 2012, 2(24): 9005-9010.
                 light-emitting N-based carbon nanodots and their efficient solid-state   [99]  TEICHLER A, SHU Z, WILD A, et al. Inkjet printing of chemically
                 materials via tape-casting technology for warm WLED[J]. Chemical   tailored light-emitting polymers[J]. European Polymer Journal, 2013,
                 Engineering Journal, 2017, 324: 194-202.          49(8): 2186-2195.
            [95]  YAN F Y, SUN Z H,  ZHANG  H, et al.  The fluorescence   [100]  LI M X, YAO W J, LIU J, et al. Facile synthesis and screen printing
                 mechanismof carbon dots, and methods for  tuning their emission   of dual-mode luminescent NaYF4: Er, Yb (Tm)/carbon dots for
                 color: A review[J]. Microchimica Acta, 2019, 186(8): 583.     anti-counterfeiting applications[J]. Journal of Materials Chemistry C,
            [96]  HU S L, TRINCHI A, ATKIN P, et al. Tunable photoluminescence   2017, 5(26): 6512-6520.
                 across the entire visible spectrum from carbon dots excited by white   [101]  MACAIRAN J R, DE MEDEIROS T V, GAZZETTO M, et al.
                 light[J]. Angewandte Chemie International Edition,  2015, 54(10):   Elucidating the  mechanism of dual-fluorescence in carbon dots[J].
                 2970-2974.                                        Journal of Colloid and Interface Science, 2021, 606(Part 1): 67-76.
   52   53   54   55   56   57   58   59   60   61   62