Page 56 - 《精细化工》2022年第8期
P. 56

·1556·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 microbial fuel cell[J]. Journal of Power Sources, 2017, 363: 27-33.   hydrogel as a bioanode for enhanced  microbial electrocatalysis[J].
            [29]  HUNG Y H, LIU T Y, CHEN H Y. Renewable coffee-waste-derived   ACS Applied Materials & Interfaces, 2014, 6(11): 8158-8160.
                 porous carbons as anode materials for high-performance sustainable   [47]  KOU T Y, YANG Y, YAO B, et al. Interpenetrated bacteria-carbon
                 microbial fuel cells[J]. ACS Sustainable Chemistry & Engineering,   nanotubes film for microbial fuel cells[J]. Small Methods, 2018,
                 2019, 7(20): 16992-16996.                         2(10): 1-8.
            [30]  CHEN X, CUI D, WANG X, et al. Porous carbon with defined pore   [48]  ZHANG P, LIU J, QU Y P, et al. Enhanced performance of microbial
                 size as anode of microbial fuel cell[J]. Biosensors and Bioelectronics,   fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm[J].
                 2015, 69: 135-141.                                Journal of Power Sources, 2017, 361: 318-325.
            [31]  ZHU N, CHEN X, ZHANG T,  et al. Improved performance of   [49]  MASSAGLIA G, MARGARIA V, FIORENTIN M R, et al. Nonwoven
                 membrane free single-chamber air-cathode microbial fuel cells with   mats of N-doped carbon nanofibers as high-performing anodes in
                 nitric acid and ethylenediamine surface  modified activated carbon   microbial fuel cells[J]. Materials Today Energy, 2020, 16: 1-11.
                 fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426.   [50]  CAI T, HUANG M H, HUANG Y X, et al. Enhanced performance of
            [32]  TANG X, GUO K, LI H, et al. Electrochemical treatment of graphite   microbial fuel cells by electrospinning carbon nanofibers hybrid
                 to enhance electron transfer from bacteria to electrodes[J]. Bioresource   carbon nanotubes composite anode[J]. International Journal of
                 Technology, 2011, 102(3): 3558-3560.              Hydrogen Energy, 2019, 44(5): 3088-3098.
            [33]  SONU K, SONGANI M, SYED Z,  et al. Improved degradation of   [51]  LIN X Q, LI Z L, LIANG B, et al. Identification of biofilm formation
                 dye wastewater  and enhanced power output in microbial fuel cells   and exoelectrogenic population structure and function with graphene/
                 with chemically treated corncob anodes[J]. Biomass Conversion and   polyanliline modified anode in microbial fuel cell[J]. Chemosphere,
                 Biorefinery, 2021, 17: 1-5.                       2019, 219: 358-364.
            [34]  ZHAO Y, MA Y, LI T, et al. Modification of carbon felt anodes using   [52]  LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for
                 double-oxidant HNO 3/H 2O 2 for application in microbial fuel cells[J].   high-performance  mediatorless microbial fuel cells[J]. Bioresource
                 RSC Advances, 2018, 8: 2059-2063.                 Technology, 2012, 114(1): 275-280.
            [35]  GARCIA-GOMEZ N A,  BALDERAS-RENTERIA I, GARCIA-   [53]  LIU X Y, ZHU Y S, YE H L, et al. Controlled tin oxide nanoparticles
                 GUTIERREZ D I, et al. Development of mats composed by TiO 2 and   encapsulated in N-doped carbon nanofibers for superior lithium-ion
                 carbon dual electrospun nanofibers: A possible anode material in   storage[J]. ACS Applied Energy Materials, 2022, 5(2): 1840-1848.
                 microbial fuel cells[J]. Materials Science &  Engineering B, 2015,   [54]  LIU W H (刘伟红), LIN Y X (林怡雪), SONG L X (宋立新), et al.
                 193: 130-136.                                     Research progress of flexible carbon based nanofibers films[J].
            [36]  TOPRAKCI H  A  K, TURGUT  A, TOPRAKCI O. Fabrication and   Journal of Silk (丝绸), 2020, 57(12): 1-2.
                 characterization of vapor grown carbon nanofiber reinforced flexible   [55]  XING Y L,  WANG Y J, ZHOU C  G,  et al. Simple synthesis  of
                 polymer composites[J]. Research on Engineering  Structures and   mesoporous carbon nanofibers with hierarchical nanostructure for
                 Materials, 2020, 6(2): 153-165.                   ultrahigh lithium storage[J]. ACS Appl Mater Interfaces, 2014, 6(4):
            [37]  BARHOUM A, PAL K, RAHIER  H,  et al. Nanofibers as new-   2561-2567.
                 generation materials: From spinning and nano-spinning fabrication   [56]  WEN Y M, JIANG M Z, KITCHENS C L, et al. Synthesis of carbon
                 techniques to emerging applications[J]. Applied Materials  Today,   nanofibers via hydrothermal conversion of cellulose nanocrystals[J].
                 2019, 17: 1-35.                                   Cellulose, 2017, 24: 4599-4604.
            [38]  XU T, SONG J N, LIN W C, et al. A freestanding carbon submicro-   [57]  ZHOU X X, WANG Y,  GONG C C,  et al. Production, structural
                 fiber sponge as high-efficient bioelectrochemical anode for wastewater   design, functional control, and broad applications of carbon nanofiber-
                 energy recovery and treatment[J]. Applied Energy, 2021, 281: 1-6.   based nanomaterials: A comprehensive review[J]. Chemical Engineering
            [39]  TAO  Y F, LIU  Q Z, CHEN J H,  et al. Hierarchically  three   Journal, 2020, 402: 1-5.
                 dimensional  nanofiber based textile  with high conductivity and   [58]  LIN H (林皓),  ZHAO J Y (赵瑨云), HU J P (胡家朋),  et al.
                 biocompatibility as a  microbial fuel cell anode[J]. Environmental   Research progress in electrospinning of activated carbon nanofibers
                 Science & Technology, 2016, 50(14): 7889-7895.     and its application[J].  Chemical Industry and Engineering Progress
            [40]  YUAN H R, DENG L F, CHEN Y, et al. MnO 2/Polypyrrole/MnO 2   (化工进展), 2017, 36(8): 2986-2988.
                 multi-walled-nanotube-modified anode for high-performance microbial   [59]  INAGAKII M, YING Y, KANG F Y. Carbon nanofibers prepared via
                 fuel cells[J]. Electrochimica Acta, 2016, 196: 280-285.   electrospinning[J]. Cheminform, 2012, 24(19): 2547-2566.
            [41]  ABDALLA S, AL-MARZOUKI F, Al-GHAMDI A A, et al. Different   [60]  TIAN D (田地), LU X F (卢晓峰), LI W M (李闱墨), et al. Research
                 technical applications of carbon  nanotubes[J]. Nanoscale Research   progress of adhesive-free electrode materials for electrospinning
                 Letters, 2015, 10(1): 1-10.                       nanofiber supercapacitor[J]. Acta Physico-Chimica Sinica (物理化学
            [42]  THEPSUPARUNGSIKUL N, NG  T C, LEFEBVRE  O,  et al.   学报), 2020, 36(2): 71-86.
                 Different types  of carbon nanotube-based anodes to improve   [61]  ZHU N  W, CHEN  X, ZHANG  T,  et al. Improved performance of
                 microbial fuel cell performance[J]. Water Science and Technology,   membrane free single chamber air-cathode microbial fuel cells with
                 2014, 69(9): 1900-1910.                           nitric acid and ethylenediamine surface  modified activated carbon
            [43]  ZHAO N, MA Z K, SONG H H, et al. Enhancement of bioelectricity   fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426.
                 generation by synergistic modification of vertical carbon nanotubes/   [62]  FENG Y J,  YANG Q, WANG  X,  et al. Treatment of carbon fiber
                 polypyrrole for the carbon fibers anode in microbial fuel cell[J].   brush anodes for improving power generation in air cathode
                 Electrochimica Acta, 2019, 296: 69-74.            microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7):
            [44]  SMART S K, CASSADY A I, LU G Q, et al. The biocompatibility of   1841-1844.
                 carbon nanotubes[J]. Carbon, 2006, 44(6): 1034-1047.   [63]  LAI B, TANG X H, LI H R. Power production enhancement with a
            [45]  WANG Z B, XIONG S C, GUAN Y J, et al. Synthesization of SnO 2   polyaniline modified anode in microbial fuel cells[J]. Biosensors and
                 modified carbon nanotubes and their  application in microbial  fuel   Bioelectronics, 2011, 28: 373-377.
                 cell[J]. Applied Physics A, 2016, 122(3): 206-210.   [64]  ASHISH P K, SINGH D. Performance-based laboratory evaluation
            [46]  LIU X W, HUANG Y X, SUN X F, et al. Conductive carbon nanotube   of asphaltic  mixture containing asphalt binder-carbon nanotube
   51   52   53   54   55   56   57   58   59   60   61