Page 56 - 《精细化工》2022年第8期
P. 56
·1556· 精细化工 FINE CHEMICALS 第 39 卷
microbial fuel cell[J]. Journal of Power Sources, 2017, 363: 27-33. hydrogel as a bioanode for enhanced microbial electrocatalysis[J].
[29] HUNG Y H, LIU T Y, CHEN H Y. Renewable coffee-waste-derived ACS Applied Materials & Interfaces, 2014, 6(11): 8158-8160.
porous carbons as anode materials for high-performance sustainable [47] KOU T Y, YANG Y, YAO B, et al. Interpenetrated bacteria-carbon
microbial fuel cells[J]. ACS Sustainable Chemistry & Engineering, nanotubes film for microbial fuel cells[J]. Small Methods, 2018,
2019, 7(20): 16992-16996. 2(10): 1-8.
[30] CHEN X, CUI D, WANG X, et al. Porous carbon with defined pore [48] ZHANG P, LIU J, QU Y P, et al. Enhanced performance of microbial
size as anode of microbial fuel cell[J]. Biosensors and Bioelectronics, fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm[J].
2015, 69: 135-141. Journal of Power Sources, 2017, 361: 318-325.
[31] ZHU N, CHEN X, ZHANG T, et al. Improved performance of [49] MASSAGLIA G, MARGARIA V, FIORENTIN M R, et al. Nonwoven
membrane free single-chamber air-cathode microbial fuel cells with mats of N-doped carbon nanofibers as high-performing anodes in
nitric acid and ethylenediamine surface modified activated carbon microbial fuel cells[J]. Materials Today Energy, 2020, 16: 1-11.
fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426. [50] CAI T, HUANG M H, HUANG Y X, et al. Enhanced performance of
[32] TANG X, GUO K, LI H, et al. Electrochemical treatment of graphite microbial fuel cells by electrospinning carbon nanofibers hybrid
to enhance electron transfer from bacteria to electrodes[J]. Bioresource carbon nanotubes composite anode[J]. International Journal of
Technology, 2011, 102(3): 3558-3560. Hydrogen Energy, 2019, 44(5): 3088-3098.
[33] SONU K, SONGANI M, SYED Z, et al. Improved degradation of [51] LIN X Q, LI Z L, LIANG B, et al. Identification of biofilm formation
dye wastewater and enhanced power output in microbial fuel cells and exoelectrogenic population structure and function with graphene/
with chemically treated corncob anodes[J]. Biomass Conversion and polyanliline modified anode in microbial fuel cell[J]. Chemosphere,
Biorefinery, 2021, 17: 1-5. 2019, 219: 358-364.
[34] ZHAO Y, MA Y, LI T, et al. Modification of carbon felt anodes using [52] LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for
double-oxidant HNO 3/H 2O 2 for application in microbial fuel cells[J]. high-performance mediatorless microbial fuel cells[J]. Bioresource
RSC Advances, 2018, 8: 2059-2063. Technology, 2012, 114(1): 275-280.
[35] GARCIA-GOMEZ N A, BALDERAS-RENTERIA I, GARCIA- [53] LIU X Y, ZHU Y S, YE H L, et al. Controlled tin oxide nanoparticles
GUTIERREZ D I, et al. Development of mats composed by TiO 2 and encapsulated in N-doped carbon nanofibers for superior lithium-ion
carbon dual electrospun nanofibers: A possible anode material in storage[J]. ACS Applied Energy Materials, 2022, 5(2): 1840-1848.
microbial fuel cells[J]. Materials Science & Engineering B, 2015, [54] LIU W H (刘伟红), LIN Y X (林怡雪), SONG L X (宋立新), et al.
193: 130-136. Research progress of flexible carbon based nanofibers films[J].
[36] TOPRAKCI H A K, TURGUT A, TOPRAKCI O. Fabrication and Journal of Silk (丝绸), 2020, 57(12): 1-2.
characterization of vapor grown carbon nanofiber reinforced flexible [55] XING Y L, WANG Y J, ZHOU C G, et al. Simple synthesis of
polymer composites[J]. Research on Engineering Structures and mesoporous carbon nanofibers with hierarchical nanostructure for
Materials, 2020, 6(2): 153-165. ultrahigh lithium storage[J]. ACS Appl Mater Interfaces, 2014, 6(4):
[37] BARHOUM A, PAL K, RAHIER H, et al. Nanofibers as new- 2561-2567.
generation materials: From spinning and nano-spinning fabrication [56] WEN Y M, JIANG M Z, KITCHENS C L, et al. Synthesis of carbon
techniques to emerging applications[J]. Applied Materials Today, nanofibers via hydrothermal conversion of cellulose nanocrystals[J].
2019, 17: 1-35. Cellulose, 2017, 24: 4599-4604.
[38] XU T, SONG J N, LIN W C, et al. A freestanding carbon submicro- [57] ZHOU X X, WANG Y, GONG C C, et al. Production, structural
fiber sponge as high-efficient bioelectrochemical anode for wastewater design, functional control, and broad applications of carbon nanofiber-
energy recovery and treatment[J]. Applied Energy, 2021, 281: 1-6. based nanomaterials: A comprehensive review[J]. Chemical Engineering
[39] TAO Y F, LIU Q Z, CHEN J H, et al. Hierarchically three Journal, 2020, 402: 1-5.
dimensional nanofiber based textile with high conductivity and [58] LIN H (林皓), ZHAO J Y (赵瑨云), HU J P (胡家朋), et al.
biocompatibility as a microbial fuel cell anode[J]. Environmental Research progress in electrospinning of activated carbon nanofibers
Science & Technology, 2016, 50(14): 7889-7895. and its application[J]. Chemical Industry and Engineering Progress
[40] YUAN H R, DENG L F, CHEN Y, et al. MnO 2/Polypyrrole/MnO 2 (化工进展), 2017, 36(8): 2986-2988.
multi-walled-nanotube-modified anode for high-performance microbial [59] INAGAKII M, YING Y, KANG F Y. Carbon nanofibers prepared via
fuel cells[J]. Electrochimica Acta, 2016, 196: 280-285. electrospinning[J]. Cheminform, 2012, 24(19): 2547-2566.
[41] ABDALLA S, AL-MARZOUKI F, Al-GHAMDI A A, et al. Different [60] TIAN D (田地), LU X F (卢晓峰), LI W M (李闱墨), et al. Research
technical applications of carbon nanotubes[J]. Nanoscale Research progress of adhesive-free electrode materials for electrospinning
Letters, 2015, 10(1): 1-10. nanofiber supercapacitor[J]. Acta Physico-Chimica Sinica (物理化学
[42] THEPSUPARUNGSIKUL N, NG T C, LEFEBVRE O, et al. 学报), 2020, 36(2): 71-86.
Different types of carbon nanotube-based anodes to improve [61] ZHU N W, CHEN X, ZHANG T, et al. Improved performance of
microbial fuel cell performance[J]. Water Science and Technology, membrane free single chamber air-cathode microbial fuel cells with
2014, 69(9): 1900-1910. nitric acid and ethylenediamine surface modified activated carbon
[43] ZHAO N, MA Z K, SONG H H, et al. Enhancement of bioelectricity fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426.
generation by synergistic modification of vertical carbon nanotubes/ [62] FENG Y J, YANG Q, WANG X, et al. Treatment of carbon fiber
polypyrrole for the carbon fibers anode in microbial fuel cell[J]. brush anodes for improving power generation in air cathode
Electrochimica Acta, 2019, 296: 69-74. microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7):
[44] SMART S K, CASSADY A I, LU G Q, et al. The biocompatibility of 1841-1844.
carbon nanotubes[J]. Carbon, 2006, 44(6): 1034-1047. [63] LAI B, TANG X H, LI H R. Power production enhancement with a
[45] WANG Z B, XIONG S C, GUAN Y J, et al. Synthesization of SnO 2 polyaniline modified anode in microbial fuel cells[J]. Biosensors and
modified carbon nanotubes and their application in microbial fuel Bioelectronics, 2011, 28: 373-377.
cell[J]. Applied Physics A, 2016, 122(3): 206-210. [64] ASHISH P K, SINGH D. Performance-based laboratory evaluation
[46] LIU X W, HUANG Y X, SUN X F, et al. Conductive carbon nanotube of asphaltic mixture containing asphalt binder-carbon nanotube