Page 61 - 《精细化工》2022年第9期
P. 61

第 9 期                   李   苗,等:  荧光传导机理构建 β-半乳糖苷酶探针的研究进展                               ·1779·


            限且波长位于近红外光区的 β-Gal 荧光探针不但可                             over intra- and intermolecular charge transfer can turn on the
            以提高临床检测灵敏度,对早期卵巢癌或细胞衰老                                 fluorescence emission  of non-emissive coumarin[J]. Journal of
                                                                   Materials Chemistry C, 2016, 4(20): 4556-4567.
            进行检测,而且可以提高探针在深层组织成像的空
                                                               [15]  SUN W, GUO S G, HU C,  et al. Recent development of
            间分辨率。同时,开发具有细胞膜通透性、细胞保                                 chemosensors  based on cyanine platforms[J]. Chemical Reviews,
            留性好以及化学稳定性高等特点的 β-Gal 荧光探针                             2016, 116(14): 7768-7817.
            能够使检测信号稳定输出,提高探针信号的保真度。                            [16]  GUO  Z Q, PARK S, YOON J,  et al. Recent progress in the
                                                                   development of  near-infrared fluorescent probes for bioimaging
                 本综述为用于 β-Gal 相关疾病诊断和治疗效果
                                                                   applications[J]. Chemical Society Reviews, 2014, 43(1): 16-29.
            评估荧光探针的研发奠定了坚实基础,有助于推进                             [17]  REDY-KEISAR O, KISIN-FINFER E, FERBER S, et al. Synthesis
            荧光探针在疾病检测领域取得突破性进展。                                    and use of QCy7-derived modular probes for the detection and
                                                                   imaging of biologically relevant analytes[J]. Nature Protocols, 2014,
            参考文献:                                                  9(1): 27-36.
                                                               [18]  ZHANG J T, LI C, DUTTA C, et al. A novel near-infrared fluorescent
            [1]   JACOBSON R H, ZHANG X J, DUBOSE R F,  et al. Three-
                                                                   probe for sensitive detection of  β-galactosidase in living cells[J].
                 dimensional structure of  β-galactosidase from  E. coli[J]. Nature,
                                                                   Analytica Chimica Acta, 2017, 968: 97-104.
                 1994, 369(6483): 761-766.
                                                               [19]  ZHEN X, ZHANG J J, HUANG J G, et al. Macrotheranostic probe
            [2]   MATTHEWS B  W. The structure of  E. coli  β-galactosidase[J].
                                                                   with disease-activated near-infrared fluorescence, photoacoustic, and
                 Comptes Rendus Biologies, 2005, 328(6): 549-556.
                                                                   photothermal signals for imaging-guided therapy[J]. Angewandte
            [3]   DIMRI G P, LEE X, BASILE G, et al. A biomarker that identifies
                                                                   Chemie International Edition, 2018, 57(26): 7804-7808.
                 senescent human  cells in culture and in aging skin in vivo[J].
                                                               [20]  GARDNER S H,  BRADY C J, KEETON C,  et al. A  general
                 Proceedings of the National Academy of Sciences of the United
                                                                   approach to convert hemicyanine dyes into highly optimized
                 States of America, 1995, 92(20): 9363-9367.
                                                                   photoacoustic scaffolds for analyte sensing[J]. Angewandte Chemie
            [4]   GU K Z, XU Y  S, LI H,  et al. Real-time tracking and  in vivo
                                                                   International Edition, 2021, 60(34): 18860-18866.
                 visualization of  β-galactosidase activity in colorectal tumor with a
                                                               [21]  MAKSIMAINEN  M M, LAMPIO  A, MERTANEN M,  et al. The
                 ratiometric near-infrared fluorescent probe[J]. Journal of the
                 American Chemical Society, 2016, 138(16): 5334-5340.   crystal structure of acidic β-galactosidase from Aspergillus oryzae[J].
            [5]   ZHANG J J, CHENG P H, PU K Y. Recent advances of molecular   International Journal of Biological  Macromolecules, 2013, 60:
                 optical probes in imaging of  β-galactosidase[J]. Bioconjugate   109-115.
                 Chemistry, 2019, 30(8): 2089-2101.            [22]  CHATTERJEE S K, BHATTACHARYA M, BARLOW J J.
            [6]   YAO Y K, ZHANG  Y  T, YAN  C X,  et al. Enzyme-activatable   Glycosyltransferase and glycosidase activities in ovarian cancer
                 fluorescent probes for  β-galactosidase: From design to  biological   patients[J]. Cancer Research, 1979, 39(6): 1943-1951.
                 applications[J]. Chemical Science, 2021, 12(29): 9885-9894.   [23]  BRUSUKER I, RHODES J M, GOLDMAN R. β-Galactosidase-An
            [7]   ASANUMA D, SAKABE M, KAMIYA M,  et al. Sensitive   indicator of the maturational stage of mouse and human mononuclear
                 β-galactosidase-targeting fluorescence  probe  for visualizing small   phagocytes[J]. Journal of Cellular Physiology, 1982, 112(3):
                 peritoneal metastatic tumours  in vivo[J]. Nature Communications,   385-390.
                 2015, 6(1): 6463.                             [24]  HUGHES A  L, GOTTSCHLING D  E. An early age increase in
            [8]   DI MICCO R, KRIZHANOVSKY  V, BAKER D,  et al. Cellular   vacuolar pH limits mitochondrial function and lifespan in yeast[J].
                 senescence in ageing: From  mechanisms to therapeutic   Nature, 2012, 492(7428): 261-265.
                 opportunities[J]. Nature Reviews Molecular Cell Biology, 2020,   [25]  LIU J, LU W N, REIGADA D, et al. Restoration of lysosomal pH in
                 22(112): 75-95.                                   RPE cells from cultured  human and ABCA4/mice: Pharmacologic
            [9]   SHI D L, LIU  W W, WANG G W,  et al. Small-molecule   approaches and functional recovery[J]. Investigative Ophthalmology
                 fluorescence-based probes  for aging diagnosis[J].  Acta Materia   & Visual Science, 2008, 49(2): 772-780.
                 Medica, 2022, 1(1): 4-23.                     [26]  DUAN W J, YUE Q, LIU Y, et al. A pH ratiometrically responsive
            [10]  PAEZ-RIBES M, GONZÁLEZ-GUALDA E, DOHERTY G J, et al.   surface enhanced resonance Raman scattering probe for tumor acidic
                 Targeting senescent cells in translational medicine[J]. EMBO   margin delineation and image-guided surgery[J]. Chemical Science,
                 Molecular Medicine, 2019, 11(12): 1-19.           2020, 11(17): 4397-4402.
            [11]  LI X K, QIU W J, LI J W, et al. First-generation species-selective   [27]  GUO Z Q,  ZHU W H, TIAN H. Dicyanomethylene-4H-pyran
                 chemical  probes  for  fluorescence  imaging  of  human  chromophores for OLED  emitters, logic gates and optical
                 senescence-associated  β-galactosidase[J]. Chemical Science, 2020,   chemosensors[J].  Chemical  Communications, 2012, 48(49): 6073-
                 11(28): 7292-7301.                                6084.
            [12]  GAO Y, HU Y L, LIU Q M, et al. Two-dimensional design strategy   [28]  YUE H, YUAN L, ZHANG W W, et al. Macrophage responses to the
                 to construct smart fluorescent  probes for the  precise tracking  of   physical burden of cell-sized particles[J]. Journal of Materials
                 senescence[J]. Angewandte Chemie International Edition, 2021,   Chemistry B, 2018, 6(3): 393-400.
                 60(19): 10756-10765.                          [29]  BANERJEE S, VEALE E, PHELAN C M, et al. Recent advances in
            [13]  LOZANO-TORRES B, GALIANA I, ROVIRA M, et al. An off-on   the development of 1,8-naphthalimide based DNA targeting binders,
                 two-photon fluorescent probe for tracking cell senescence in vivo[J].   anticancer and fluorescent cellular imaging agents[J]. Chemical
                 Journal  of  the  American Chemical Society, 2017, 139(26):   Society Reviews, 2013, 42(4): 1601-1618.
                 8808-8811.                                    [30]  ZHANG X X, WU H, LI P, et al. A versatile two-photon fluorescent
            [14]  JHUN B  H,  OHKUBO K, FUKUZUMI S,  et al. Synthetic control   probe for ratiometric imaging E. coli β-galactosidase in live cells and
   56   57   58   59   60   61   62   63   64   65   66