Page 61 - 《精细化工》2022年第9期
P. 61
第 9 期 李 苗,等: 荧光传导机理构建 β-半乳糖苷酶探针的研究进展 ·1779·
限且波长位于近红外光区的 β-Gal 荧光探针不但可 over intra- and intermolecular charge transfer can turn on the
以提高临床检测灵敏度,对早期卵巢癌或细胞衰老 fluorescence emission of non-emissive coumarin[J]. Journal of
Materials Chemistry C, 2016, 4(20): 4556-4567.
进行检测,而且可以提高探针在深层组织成像的空
[15] SUN W, GUO S G, HU C, et al. Recent development of
间分辨率。同时,开发具有细胞膜通透性、细胞保 chemosensors based on cyanine platforms[J]. Chemical Reviews,
留性好以及化学稳定性高等特点的 β-Gal 荧光探针 2016, 116(14): 7768-7817.
能够使检测信号稳定输出,提高探针信号的保真度。 [16] GUO Z Q, PARK S, YOON J, et al. Recent progress in the
development of near-infrared fluorescent probes for bioimaging
本综述为用于 β-Gal 相关疾病诊断和治疗效果
applications[J]. Chemical Society Reviews, 2014, 43(1): 16-29.
评估荧光探针的研发奠定了坚实基础,有助于推进 [17] REDY-KEISAR O, KISIN-FINFER E, FERBER S, et al. Synthesis
荧光探针在疾病检测领域取得突破性进展。 and use of QCy7-derived modular probes for the detection and
imaging of biologically relevant analytes[J]. Nature Protocols, 2014,
参考文献: 9(1): 27-36.
[18] ZHANG J T, LI C, DUTTA C, et al. A novel near-infrared fluorescent
[1] JACOBSON R H, ZHANG X J, DUBOSE R F, et al. Three-
probe for sensitive detection of β-galactosidase in living cells[J].
dimensional structure of β-galactosidase from E. coli[J]. Nature,
Analytica Chimica Acta, 2017, 968: 97-104.
1994, 369(6483): 761-766.
[19] ZHEN X, ZHANG J J, HUANG J G, et al. Macrotheranostic probe
[2] MATTHEWS B W. The structure of E. coli β-galactosidase[J].
with disease-activated near-infrared fluorescence, photoacoustic, and
Comptes Rendus Biologies, 2005, 328(6): 549-556.
photothermal signals for imaging-guided therapy[J]. Angewandte
[3] DIMRI G P, LEE X, BASILE G, et al. A biomarker that identifies
Chemie International Edition, 2018, 57(26): 7804-7808.
senescent human cells in culture and in aging skin in vivo[J].
[20] GARDNER S H, BRADY C J, KEETON C, et al. A general
Proceedings of the National Academy of Sciences of the United
approach to convert hemicyanine dyes into highly optimized
States of America, 1995, 92(20): 9363-9367.
photoacoustic scaffolds for analyte sensing[J]. Angewandte Chemie
[4] GU K Z, XU Y S, LI H, et al. Real-time tracking and in vivo
International Edition, 2021, 60(34): 18860-18866.
visualization of β-galactosidase activity in colorectal tumor with a
[21] MAKSIMAINEN M M, LAMPIO A, MERTANEN M, et al. The
ratiometric near-infrared fluorescent probe[J]. Journal of the
American Chemical Society, 2016, 138(16): 5334-5340. crystal structure of acidic β-galactosidase from Aspergillus oryzae[J].
[5] ZHANG J J, CHENG P H, PU K Y. Recent advances of molecular International Journal of Biological Macromolecules, 2013, 60:
optical probes in imaging of β-galactosidase[J]. Bioconjugate 109-115.
Chemistry, 2019, 30(8): 2089-2101. [22] CHATTERJEE S K, BHATTACHARYA M, BARLOW J J.
[6] YAO Y K, ZHANG Y T, YAN C X, et al. Enzyme-activatable Glycosyltransferase and glycosidase activities in ovarian cancer
fluorescent probes for β-galactosidase: From design to biological patients[J]. Cancer Research, 1979, 39(6): 1943-1951.
applications[J]. Chemical Science, 2021, 12(29): 9885-9894. [23] BRUSUKER I, RHODES J M, GOLDMAN R. β-Galactosidase-An
[7] ASANUMA D, SAKABE M, KAMIYA M, et al. Sensitive indicator of the maturational stage of mouse and human mononuclear
β-galactosidase-targeting fluorescence probe for visualizing small phagocytes[J]. Journal of Cellular Physiology, 1982, 112(3):
peritoneal metastatic tumours in vivo[J]. Nature Communications, 385-390.
2015, 6(1): 6463. [24] HUGHES A L, GOTTSCHLING D E. An early age increase in
[8] DI MICCO R, KRIZHANOVSKY V, BAKER D, et al. Cellular vacuolar pH limits mitochondrial function and lifespan in yeast[J].
senescence in ageing: From mechanisms to therapeutic Nature, 2012, 492(7428): 261-265.
opportunities[J]. Nature Reviews Molecular Cell Biology, 2020, [25] LIU J, LU W N, REIGADA D, et al. Restoration of lysosomal pH in
22(112): 75-95. RPE cells from cultured human and ABCA4/mice: Pharmacologic
[9] SHI D L, LIU W W, WANG G W, et al. Small-molecule approaches and functional recovery[J]. Investigative Ophthalmology
fluorescence-based probes for aging diagnosis[J]. Acta Materia & Visual Science, 2008, 49(2): 772-780.
Medica, 2022, 1(1): 4-23. [26] DUAN W J, YUE Q, LIU Y, et al. A pH ratiometrically responsive
[10] PAEZ-RIBES M, GONZÁLEZ-GUALDA E, DOHERTY G J, et al. surface enhanced resonance Raman scattering probe for tumor acidic
Targeting senescent cells in translational medicine[J]. EMBO margin delineation and image-guided surgery[J]. Chemical Science,
Molecular Medicine, 2019, 11(12): 1-19. 2020, 11(17): 4397-4402.
[11] LI X K, QIU W J, LI J W, et al. First-generation species-selective [27] GUO Z Q, ZHU W H, TIAN H. Dicyanomethylene-4H-pyran
chemical probes for fluorescence imaging of human chromophores for OLED emitters, logic gates and optical
senescence-associated β-galactosidase[J]. Chemical Science, 2020, chemosensors[J]. Chemical Communications, 2012, 48(49): 6073-
11(28): 7292-7301. 6084.
[12] GAO Y, HU Y L, LIU Q M, et al. Two-dimensional design strategy [28] YUE H, YUAN L, ZHANG W W, et al. Macrophage responses to the
to construct smart fluorescent probes for the precise tracking of physical burden of cell-sized particles[J]. Journal of Materials
senescence[J]. Angewandte Chemie International Edition, 2021, Chemistry B, 2018, 6(3): 393-400.
60(19): 10756-10765. [29] BANERJEE S, VEALE E, PHELAN C M, et al. Recent advances in
[13] LOZANO-TORRES B, GALIANA I, ROVIRA M, et al. An off-on the development of 1,8-naphthalimide based DNA targeting binders,
two-photon fluorescent probe for tracking cell senescence in vivo[J]. anticancer and fluorescent cellular imaging agents[J]. Chemical
Journal of the American Chemical Society, 2017, 139(26): Society Reviews, 2013, 42(4): 1601-1618.
8808-8811. [30] ZHANG X X, WU H, LI P, et al. A versatile two-photon fluorescent
[14] JHUN B H, OHKUBO K, FUKUZUMI S, et al. Synthetic control probe for ratiometric imaging E. coli β-galactosidase in live cells and