Page 75 - 《精细化工》2022年第9期
P. 75

第 9 期            吴   婷,等: PET/CA 根须状蓬松纳米纤维复合膜的制备及其烹饪油烟过滤性能                              ·1793·


            构提高了气体通量,降低过滤时的压阻;另一方                              米纤维复合膜的孔径,导致过滤阻力略有上升。对
            面,特殊表面润湿性(超疏水超亲油)加速油滴的                             8∶2 PET/CA 纳米纤维复合膜进行 100 min 连续过
            吸附和渗透,提升其油烟过滤效率。8∶2 PET/CA 纳                       滤测试,结果如图 6c 所示。经 100 min 的连续测试
            米纤维复合膜的油烟过滤循环性能测试如图 6b 所                           后,其油烟过滤效率仍高于 90%;且随着过滤时间
            示。经 20 次循环测试后,仍保持较高的过滤效率                           的延长,过滤效率变化不大,其过滤阻力大致以
            (≥91%)和较小的过滤阻力(≤43 Pa);其过滤阻                        3 min/Pa 的速度上升,与图 6b 的测试结果一致。
            力则呈阶梯形上升规律,每经 3~4 次循环,过滤阻                              本文制备材料与文献已报道的油烟过滤材料的
            力上升 1 Pa,这可能是由于所过滤的油性颗粒在根                          过滤性能对比如表 2 所示。可以看出,本文所制备
            须状蓬松纳米纤维复合膜中的聚结所致,被蓬松纤                             的 PET/CA 根须状蓬松纳米纤维复合膜的过滤效率
            维捕获的油性颗粒,从根须末端向根部汇集,在其                             与过滤阻力均优于其他过滤材料。其初始过滤效率
            根须端聚集成小液滴,经过多次循环过滤,小液滴                             为 92%,初始过滤阻力仅为 36 Pa,在烹饪油烟过滤
            在纤维根部交叉处逐渐聚结成大液滴,从而堵塞纳                             领域处于领先地位。

                                               表 2   不同滤材油烟过滤性能对比
                              Table 2    Comparison of fume filtration performance of different filter materials
                                                                            循环使用性能
                                             初始过滤     初始过滤                                  循环后过
                    分离材料           制备技术                                                              参考文献
                                             效率/%      阻力/Pa    循环次数/次     循环后过滤效率/%         滤阻力
                                                                                              /Pa
            木棉纤维                   造纸          69       2422       —             —            —        [8]
            无纺布                    熔喷          70        143        5            70           286      [7]
            三维编织纤维                 针织          80        84         5            80           178      [7]
            含氟聚氨酯纳米纤维膜             静电纺丝        90        107       —             —            —        [12]
            8∶2 PET/CA 纳米纤维复合膜     静电纺丝        92        36        20            91           43       本文

            3   结论                                                 cooking: A literature review[J]. Building  Simulation, 2018, 11(5):
                                                                   977-995.
                                                               [5]   FENG T C (冯铁成), YI H H (易红宏), TANG X L (唐晓龙), et al.
                 采用共溶剂静电纺丝技术制备 PET/CA 纳米纤                          Research progress of food lampblack  pollution and its purification
                                                                   technology[J]. Modern Chemical Industry (现代化工), 2017, 37(3):
            维复合膜,通过改变 PET/CA 的共混比,构筑具有                             20-23.
            高孔隙率(93.85%±0.23%)、低堆积密度〔(0.023±                   [6]   ZHAO D F, YOU X Y. Cooking grease particles purification review
                                                                   and technology combination strategy evaluation for commercial kitchens
                     3
            0.001) g/m 〕根须状蓬松纳米纤维复合膜。PET/CA                        [J]. Building Simulation, 2021, 14(6): 1597-1617.
                                                               [7]   SHENG Y,  ZHENG L,  WANG Y Q, et al. Exploration of a novel
            根须状蓬松纳米纤维膜具有超疏水(154.0°±0.5°)、                          three-dimensional knitted spacer air filter with low pressure drop on
            超亲油性(油完全吸收时间 2 s)。DEHS 气溶胶模拟                           cooking fume particles removal[J]. Building and Environment, 2020,
                                                                   177: 106903.
            烹饪油烟测试其油烟过滤性能,结果表明,其具备较                            [8]  WANG D (王迪). Study on structure and properties of coalescence
                                       –1
            高的过滤品质(Q f = 0.0702 Pa ),且经过 20 次循环                    materials for oil and gasseparation[D].  Guangzhou: South China
                                                                   University of Technology (华南理工大学), 2020.
            后,对 DEHS 气溶胶仍保持较高的过滤效率(≥91%)                       [9]   GAO D G (高党鸽), LI P Y (李鹏宇), SU Y (苏莹), et al. Research
                                                                   progress of special wettability oil-water separation materials[J]. Fine
            和较小的过滤阻力(≤43 Pa);在经 100 min 连续过滤                       Chemicals (精细化工), 2021, 38(9): 1746-1756.
                                                               [10]  WU Y P (吴延鹏), ZHONG Q Y (钟乔洋), XING Y (邢奕), et al.
            测试后,该纳米纤维复合膜的过滤效率仍高于 90%,                              Progress in air filtration of electrospinning nanofiber membrane[J].
            过滤阻力规律性缓慢增长,能够满足烹饪油烟过滤                                 Fine Chemicals (精细化工), 2021, 38(8): 1530-1541.
                                                               [11]  ZHOU H, NIU H T, WANG H X, et al. A versatile, highly-effective
            材料的使用需求。PET/CA 根须状蓬松纳米纤维复                              nanofibrous separation membrane[J]. Nanoscale, 2020, 12(4): 2359-2365.
            合膜对烹饪油烟具有有效的过滤性能,有望成为过                             [12]  WANG J, HOU L, YAO Z K, et al. Antifouling sandwich-structured
                                                                   electrospun nanofibrous membranes by integrating fluffy and hydrophobic
            滤精度高、压阻低、使用时效长的油烟过滤新材料。                                layers for long-term airborne particulatematter segregation[J].
                                                                   Environmental Science: Nano, 2021, 8(11): 3322-3330.
                                                               [13]  LIU H, ZHANG S C, LIU L F, et al. A fluffy dual-network structured
            参考文献:                                                  nanofiber/net filterenables high-efficiency air filtration[J]. Advanced
            [1]   CHEN  C,  ZHAO  Y J, ZHAO  B. Emission rates of multiple air   Functional Materials, 2019, 29(39): 1904108.
                 pollutants generated from Chinese residential cooking[J]. Environmental   [14]  ZHOU W T, HUANG H T, DU S, et al. Removal of copper ions from
                 Science & Technology, 2018, 52(3): 1081-1087.     aqueous solution by adsorption onto novel polyelectrolyte film-coated
            [2]   CHEN  T Y, FANG Y H, CHEN H L, et al. Impact of cooking oil   nanofibrous silk fibroin non-wovens[J]. Applied Surface Science,
                 fume  exposure and fume extractor use on lung cancer risk innon-   2015, 345(1): 169-174.
                 smoking han chinese women[J]. Scientific Reports, 2020, 10(1): 1-10.   [15]  LI W H (李文辉). Study on efficient separation, absorption-catalytic
            [3]   WANG  Y Q (王亚琪), CHANG T (常甜), CHEN Q C (陈庆彩).   and rapid detection technology of cooking oil fume[D]. Beijing: University
                 Research progress on composition  characteristics and treatment   of Chinese Academy of Sciences (中国科学院大学), 2018.
                 technology of VOCs from catering sources[J]. Environmental Engineering   [16]  NISHIHARA S, OTANI M. Hybrid solvation models for bulk, interface,
                 (环境工程), 2021, 39(6): 90-98.                       and membrane: Reference interaction site methods coupled with density
            [4]   ZHAO Y J,  ZHAO B. Emissions of air pollutants from Chinese   functional theory[J]. Physical Review B, 2017, 96(11): 115429.
   70   71   72   73   74   75   76   77   78   79   80