Page 215 - 《精细化工》2023年第1期
P. 215

第 40 卷第 1 期                             精   细   化   工                                  Vol.40, No.1
             2 023 年 1 月                             FINE CHEMICALS                                  Jan.  2023


              油田化学品与油品添加剂
                    水性树脂的制备及对油井水泥防腐性能的提升



                                                    2
                                                                 2
                                                                                          1*
                                                                              3
                             霍宏博      1,2 ,谢   涛 ,许   杰 ,周征艳 ,何世明
                 〔1.  西南石油大学  油气藏地质及开发工程国家重点实验室,四川  成都  610500;2.  中海石油(中国)
                 有限公司  天津分公司,天津  300452;3.  西南石油大学  化学化工学院,四川  成都  610500〕

                 摘要:以苯乙烯磺酸钠、环氧树脂 E54 为原料,制备了一种用于提高油井水泥石抗 CO 2 腐蚀的水性环氧树脂
                                1
                 WEP。通过 FTIR、 HNMR 及 TG 分析了其化学结构和热稳定性。将制备的 WEP 分散到水中形成乳液,测试了
                 乳液的分散性与稳定性。将 WEP 用于油井水泥石中,在模拟地层高温高压及 CO 2 酸性环境条件下进行了水泥
                 石腐蚀实验,通过抗压强度、热重分析、SEM 以及 XRD 评价了水泥石的腐蚀程度。结果表明,WEP 具有较好
                 的环境应用热稳定性,其热分解温度为 295  ℃。WEP 具有良好的自乳化性能,乳液分散均匀,乳液滴粒径较小,
                 且乳液稳定性高,在 6000 r/min 离心分离条件下可稳定 30 min 不分层。WEP 可有效提高水泥石抗 CO 2 腐蚀性
                 能,水泥石在 180  ℃、总压 40 MPa、CO 2 分压 10 MPa 条件下,腐蚀 90 d 后,含 WEP 的改性水泥石抗压强度
                 衰退率仅为 14.7%,CaCO 3 质量分数仅为 0.25%,均远低于对比水泥石。XRD 和 SEM 结果表明,WEP 改性的
                 水泥石腐蚀后,其内部主要成分仍是水化硅酸钙等水化产物。WEP 在水泥石中形成包裹水化产物的聚合物膜,
                 从而减少了水化产物与 CO 2 的接触,提高了水泥石的抗 CO 2 腐蚀性能。
                 关键词:油井水泥;环氧树脂;高温防腐;水性树脂;油田化学品
                 中图分类号:TE983      文献标识码:A      文章编号:1003-5214 (2023) 01-0207-07



                         Preparation of water-based epoxy resin and improvement of
                                  anticorrosion performance of oil well cement


                                                                             3
                                                    2
                                                                                          1*
                                          1,2
                                                            2
                             HUO Hongbo , XIE Tao , XU Jie , ZHOU Zhengyan , HE Shiming
                 (1. State Key Laboratory of Reservoir Geology and Development  Engineering, Southwest Petroleum University, Chengdu
                 610500, Sichuan, China; 2. China National Offshore Oil Corporation, Limited Tianjin Branch, Tianjin 300452, China; 3.
                 School of Chemical and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China)
                 Abstract: A water-based epoxy resin WEP was synthesized from sodium styrene sulfonate and epoxy resin
                 E54 to improve the CO 2 corrosion resistance  of  oil well cement. The chemical structure and thermal
                                                                1
                 stability of WEP obtained were then analyzed by FTIR,  HNMR and TG. An emulsion was also prepared
                 from WEP and water and tested for dispersion and stability. Furthermore, the corrosion experiment of oil
                 well cement stone modified with WEP was conducted under simulated high temperature, high pressure and
                 CO 2 acidic environment, with the corrosion degree evaluated by compressive strength, thermal gravimetric
                 analysis, SEM and XRD. The results showed that WEP exhibited good thermal stability for environmental
                 applications  with a thermal  decomposition temperature of 295  ℃,  as  well as good self-emulsifying
                 performance, uniform emulsion dispersion, small droplet size, and high emulsion stability. The emulsion
                 formed by WEP and water could be stable for 30 min without stratification under centrifugal separation
                 condition  of  6000 r/min. It was also  proved that WEP could effectively enhance  the CO 2 corrosion
                 resistance of cement stone. After 90 days of corrosion at 180  ℃, total pressure of 40 MPa and CO 2 partial
                 pressure of 10 MPa, the cement stone modified by WEP showed a compressive strength decline rate of only
                 14.7%, and CaCO 3 mass fraction of only 0.25%, far lower than when compared with the cement control.
                 XRD and SEM results revealed that the main components of WEP modified cement stone after corrosion
                 were still hydration products such as hydrated calcium silicate, which were wrapped by the polymer film

                 收稿日期:2022-04-26;  定用日期:2022-09-05; DOI: 10.13550/j.jxhg.20220399
                 作者简介:霍宏博(1985—),男,博士,E-mail:okoh2006@163.com。联系人:何世明(1966—),男,教授,E-mail:hesming@sina.com。
   210   211   212   213   214   215   216   217   218   219   220