Page 128 - 《精细化工)》2023年第10期
P. 128

·2206·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 实际应用表明,在应对一些特殊作业需求,如                              ionic cross-linking[J]. Macromolecules, 2017, 50(14): 5539-5548.
                                                               [12]  ZHAO D, LI D, QUAN F L,  et al. Rapidly thermoreversible and
            在中国大部分油田的中低渗油藏(胜利油田的中低                                 biodegradable polypeptide hydrogels with sol-gel-sol transition dependent
            渗储层温度在 65  ℃以上)的油气开采及管道运输                              on subtle manipulation of side groups[J]. Biomacromolecules, 2021,
                                                                   22(8): 3522-3533.
            的封堵作业过程中,常规堵剂存在后期难以降解的                             [13]  YIN H Y, YIN X, CAO R B, et al. In situ crosslinked weak gels with
            问题,而本研究构建的体系能够利用地层温度诱发                                 ultralong and tunable gelation times for improving oil recovery[J].
                                                                   Chemical Engineering Journal, 2022, 432: 134350-134366.
            酯基断裂自发完成降解,有望在实际生产中得以应用。                           [14]  REN Q, JIA H, YU D, et al. New insights into phenol-formaldehyde-
                                                                   based gel systems with ammonium salt for low-temperature reservoirs[J].
            致谢                                                     Applied Polymer Science, 2014, 131: 40657-40675.
                                                               [15]  ZHAO L Q, CHEN X, ZOU H L, et al. A review of diverting agents
                 感谢通讯作者穆蒙博士对本研究体系思路的设                              for reservoir stimulation[J]. Journal of Petroleum Science and
                                                                   Engineering, 2020, 187: 106734-106744.
            计、数据分析及实验指导。
                                                               [16]  LUO Z K (罗仲宽), DENG X W (邓新旺), HU H Y (胡惠媛), et al.
                                                                   Preparation and properties of PHEMA hydrogel material[J]. Rare
            参考文献:                                                  Metal Materials and Engineering  (稀有金属材料与工程), 2016,
            [1]   AHMED E M. Hydrogel: Preparation, characterization, and applications:   45(S1): 427-430.
                 A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.   [17]  KAZEMI A, ZANDI M, SHOKROLLAHI M, et al. Surface modification
            [2]   LIU X  Y, LIU J,  LIN S T,  et al. Hydrogel machines[J]. Materials   of poly(2-hydroxyethyl methacrylate) hydrogel for contact lens
                 Today, 2020, 36: 102-124.                         application[J]. Polymers Advanced Technologies, 2018, 29: 1227-1233.
            [3]   SHIBATA M, TERASHIMA T, KOGA T. Thermoresponsive gelation   [18]  KIM J, CHAUHAN A. Dexamethasone transport and ocular delivery
                 of amphiphilic random copolymer micelles in water[J]. Macromolecules,   from poly(hydroxyethyl  methacrylate) gels[J]. International Journal
                 2021, 54(11): 5241-5248.                          of Pharmaceutics, 2008, 353: 205-222.
            [4]   AHN S K, KASI R M, KIM S C, et al. Stimuli-responsive polymer   [19]  ZHANG P, XU Z Y, WU Z Y, et al. Strengthening poly(2-hydroxyethyl
                 gels [J]. Soft Matter, 2008, 4(6): 1151-1157.     methacrylate) hydrogels using biochars and hydrophobic aggregations
            [5]   KITAZAWA Y, UEKI T, MCINTOSH L D, et al. Hierarchical sol-gel   [J]. International Journal of Smart and Nano Materials,  2022, 13:
                 transition induced by thermosensitive self-assembly of  an ABC   561-574.
                 triblock polymer in an ionic liquid[J]. Macromolecules, 2016, 49(4):   [20]  SELLING G W, WOODS K K, BISWAS A. Electrospun zein fibers
                 1414-1423.                                        using glyoxal as the crosslinking reagent[J]. Journal of Applied Polymer
            [6]   WU L H (吴立煌), LI W L (李炜镧), CAI X J (蔡晓军). Research   Science, 2012, 123(5): 2651-2661.
                 progress of stimulus-responsive  hydrogels for controlled drug   [21]  YU X R, PU W  F, CHEN D J,  et al. Degradable cross-linked
                 delivery[J]. Chinese Journal of Bioprocess Engineering (生物加工过  polymeric  microsphere for enhanced oil recovery applications[J].
                 程), 2020, 18(6): 806-814.                         RSC Advances, 2015, 5(77): 62752-62762.
            [7]   HE C L, KIM S W, LEE D S. In situ gelling stimuli-sensitive block   [22]  AN H, XU K Y, CHANG L M, et al. Thermo-responsive self-healable
                 copolymer hydrogels for drug delivery[J]. Journal of Controlled   hydrogels with extremely mild base degradability and bio-compatibility
                 Release, 2008, 127(3): 189-207.                   [J]. Polymer, 2018, 147: 38-47.
            [8]   ZHANG D, REN B P, ZHANG Y X, et al. From design to applications   [23]  SYDANSK R D. A newly developed chromium(Ⅲ) gel technology[J].
                 of stimuli-responsive hydrogel strain sensors[J]. Journal of Materials   SPE Reservoir Engineering, 1990, 5(3): 346-352.
                 Chemistry B, 2020, 8(16): 3171-3191.          [24]  SUN X (孙新), JIANG X J (姜许健), YANG X H (杨小华), et al.
            [9]   ZHAO G, YOU Q, TAO J P, et al. Preparation and application of a   Development and performance evaluation of gel plugging system for
                 novel phenolic resin dispersed particle gel for in-depth profile control   oil sludge[J]. Fine Chemicals (精细化工), 2023, 40(1): 200-206.
                 in low permeability reservoirs[J]. Journal of Petroleum Science and   [25]  FUKUDA Y, MIYAMAE K, SASANUMA Y. Computational design
                 Engineering, 2018, 161: 703-714.                  of polymers: poly (ester amide) and polyurethane[J]. RSC Advances,
            [10]  KOMATSU S, TAGO M, ANDO  Y,  et al. Facile preparation of   2017, 7(61): 38387-38398.
                 multi-stimuli-responsive degradable hydrogels for  protein loading   [26]  LIU T Y, HUANG D, XU P Y, et al. Biobased seawater-degradable
                 and release[J]. Journal of Controlled Release, 2021, 331: 1-6.   poly(butylene succinate-L-lactide) copolyesters: Exploration of degradation
            [11]  NAKAGAWA Y, OHTA S, SUGAHARA A, et al. In vivo redox-responsive   performance and degradation mechanism in natural seawater[J]. ACS
                 sol-gel/gel-sol transition of star block copolymer solution based on     Sustainable Chemistry & Engineering, 2022, 10(10): 3191-3202.




            (上接第 2097 页)                                       [56]  EL-ZAHAB B DONNELLY D, WANG P. Particle-tethered NADH
                                                                   for production of methanol from CO 2 catalyzed by coimmobilized
            [51]  HUMMEL W,  GROEGER  H. Strategies for regeneration of   enzymes[J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514.
                 nicotinamide  coenzymes emphasizing self-sufficient closed-loop   [57]  REN S, WANG Z, BILAL M, et al. Co-immobilization multienzyme
                 recycling systems[J]. Journal of Biotechnology, 2014, 191: 22-31.     nanoreactor with co-factor regeneration for conversion of CO 2[J].
            [52]  VAN DER DONK W  A, ZHAO H  M. Recent developments in   International Journal of Biological Macromolecules, 2020, 155:
                 pyridine nucleotide regeneration[J].  Current  Opinion in  Biotechnology,   110-118.
                 2003, 14(4): 421-426.                         [58]  BACCOUR  M, LAMOTTE A, SAKAI K,  et al. Production of
            [53]  MARPANI F, SAROSSY Z, PINELO M,  et al. Kinetics based   formate from CO 2 gas under ambient conditions:  Towards flow-
                 reaction optimization of enzyme catalyzed reduction of formaldehyde   through enzyme reactors[J]. Green Chemistry, 2020, 22(12): 3727- 3733.
                 to methanol with  synchronous cofactor  regeneration[J]. Biotechnology   [59]  TAN T W (谭天伟), CHEN B Q (陈必强), ZHANG H L (张会丽),
                 and Bioengineering, 2017, 114(12): 2762-2770.     et al. Accelerate  promotion  of  green bio-manufacturing to help
            [54]  UNLU A, DUMAN-OZDAMAR Z E, CALOGLU B, et al. Enzymes   achieve "carbon  neutrality"[J]. Chemical Industry and Engineering
                 for efficient CO 2 conversion[J]. Protein J, 2021, 40(4): 489-503.     Progress (化工进展), 2021, 40(3): 1137-1141.
            [55]  WANG X, LI Z, SHI J, et al. Bioinspired approach to multienzyme   [60]  LIU Z, WANG K, CHEN Y, et al. Third-generation biorefineries as
                 cascade system construction for efficient carbon dioxide reduction[J].   the means to produce fuels and chemicals from CO 2[J]. Nature
                 ACS Catalysis, 2014, 4(3): 962-972.               Catalysis, 2020, 3(3): 274-288.
   123   124   125   126   127   128   129   130   131   132   133