Page 128 - 《精细化工)》2023年第10期
P. 128
·2206· 精细化工 FINE CHEMICALS 第 40 卷
实际应用表明,在应对一些特殊作业需求,如 ionic cross-linking[J]. Macromolecules, 2017, 50(14): 5539-5548.
[12] ZHAO D, LI D, QUAN F L, et al. Rapidly thermoreversible and
在中国大部分油田的中低渗油藏(胜利油田的中低 biodegradable polypeptide hydrogels with sol-gel-sol transition dependent
渗储层温度在 65 ℃以上)的油气开采及管道运输 on subtle manipulation of side groups[J]. Biomacromolecules, 2021,
22(8): 3522-3533.
的封堵作业过程中,常规堵剂存在后期难以降解的 [13] YIN H Y, YIN X, CAO R B, et al. In situ crosslinked weak gels with
问题,而本研究构建的体系能够利用地层温度诱发 ultralong and tunable gelation times for improving oil recovery[J].
Chemical Engineering Journal, 2022, 432: 134350-134366.
酯基断裂自发完成降解,有望在实际生产中得以应用。 [14] REN Q, JIA H, YU D, et al. New insights into phenol-formaldehyde-
based gel systems with ammonium salt for low-temperature reservoirs[J].
致谢 Applied Polymer Science, 2014, 131: 40657-40675.
[15] ZHAO L Q, CHEN X, ZOU H L, et al. A review of diverting agents
感谢通讯作者穆蒙博士对本研究体系思路的设 for reservoir stimulation[J]. Journal of Petroleum Science and
Engineering, 2020, 187: 106734-106744.
计、数据分析及实验指导。
[16] LUO Z K (罗仲宽), DENG X W (邓新旺), HU H Y (胡惠媛), et al.
Preparation and properties of PHEMA hydrogel material[J]. Rare
参考文献: Metal Materials and Engineering (稀有金属材料与工程), 2016,
[1] AHMED E M. Hydrogel: Preparation, characterization, and applications: 45(S1): 427-430.
A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. [17] KAZEMI A, ZANDI M, SHOKROLLAHI M, et al. Surface modification
[2] LIU X Y, LIU J, LIN S T, et al. Hydrogel machines[J]. Materials of poly(2-hydroxyethyl methacrylate) hydrogel for contact lens
Today, 2020, 36: 102-124. application[J]. Polymers Advanced Technologies, 2018, 29: 1227-1233.
[3] SHIBATA M, TERASHIMA T, KOGA T. Thermoresponsive gelation [18] KIM J, CHAUHAN A. Dexamethasone transport and ocular delivery
of amphiphilic random copolymer micelles in water[J]. Macromolecules, from poly(hydroxyethyl methacrylate) gels[J]. International Journal
2021, 54(11): 5241-5248. of Pharmaceutics, 2008, 353: 205-222.
[4] AHN S K, KASI R M, KIM S C, et al. Stimuli-responsive polymer [19] ZHANG P, XU Z Y, WU Z Y, et al. Strengthening poly(2-hydroxyethyl
gels [J]. Soft Matter, 2008, 4(6): 1151-1157. methacrylate) hydrogels using biochars and hydrophobic aggregations
[5] KITAZAWA Y, UEKI T, MCINTOSH L D, et al. Hierarchical sol-gel [J]. International Journal of Smart and Nano Materials, 2022, 13:
transition induced by thermosensitive self-assembly of an ABC 561-574.
triblock polymer in an ionic liquid[J]. Macromolecules, 2016, 49(4): [20] SELLING G W, WOODS K K, BISWAS A. Electrospun zein fibers
1414-1423. using glyoxal as the crosslinking reagent[J]. Journal of Applied Polymer
[6] WU L H (吴立煌), LI W L (李炜镧), CAI X J (蔡晓军). Research Science, 2012, 123(5): 2651-2661.
progress of stimulus-responsive hydrogels for controlled drug [21] YU X R, PU W F, CHEN D J, et al. Degradable cross-linked
delivery[J]. Chinese Journal of Bioprocess Engineering (生物加工过 polymeric microsphere for enhanced oil recovery applications[J].
程), 2020, 18(6): 806-814. RSC Advances, 2015, 5(77): 62752-62762.
[7] HE C L, KIM S W, LEE D S. In situ gelling stimuli-sensitive block [22] AN H, XU K Y, CHANG L M, et al. Thermo-responsive self-healable
copolymer hydrogels for drug delivery[J]. Journal of Controlled hydrogels with extremely mild base degradability and bio-compatibility
Release, 2008, 127(3): 189-207. [J]. Polymer, 2018, 147: 38-47.
[8] ZHANG D, REN B P, ZHANG Y X, et al. From design to applications [23] SYDANSK R D. A newly developed chromium(Ⅲ) gel technology[J].
of stimuli-responsive hydrogel strain sensors[J]. Journal of Materials SPE Reservoir Engineering, 1990, 5(3): 346-352.
Chemistry B, 2020, 8(16): 3171-3191. [24] SUN X (孙新), JIANG X J (姜许健), YANG X H (杨小华), et al.
[9] ZHAO G, YOU Q, TAO J P, et al. Preparation and application of a Development and performance evaluation of gel plugging system for
novel phenolic resin dispersed particle gel for in-depth profile control oil sludge[J]. Fine Chemicals (精细化工), 2023, 40(1): 200-206.
in low permeability reservoirs[J]. Journal of Petroleum Science and [25] FUKUDA Y, MIYAMAE K, SASANUMA Y. Computational design
Engineering, 2018, 161: 703-714. of polymers: poly (ester amide) and polyurethane[J]. RSC Advances,
[10] KOMATSU S, TAGO M, ANDO Y, et al. Facile preparation of 2017, 7(61): 38387-38398.
multi-stimuli-responsive degradable hydrogels for protein loading [26] LIU T Y, HUANG D, XU P Y, et al. Biobased seawater-degradable
and release[J]. Journal of Controlled Release, 2021, 331: 1-6. poly(butylene succinate-L-lactide) copolyesters: Exploration of degradation
[11] NAKAGAWA Y, OHTA S, SUGAHARA A, et al. In vivo redox-responsive performance and degradation mechanism in natural seawater[J]. ACS
sol-gel/gel-sol transition of star block copolymer solution based on Sustainable Chemistry & Engineering, 2022, 10(10): 3191-3202.
(上接第 2097 页) [56] EL-ZAHAB B DONNELLY D, WANG P. Particle-tethered NADH
for production of methanol from CO 2 catalyzed by coimmobilized
[51] HUMMEL W, GROEGER H. Strategies for regeneration of enzymes[J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514.
nicotinamide coenzymes emphasizing self-sufficient closed-loop [57] REN S, WANG Z, BILAL M, et al. Co-immobilization multienzyme
recycling systems[J]. Journal of Biotechnology, 2014, 191: 22-31. nanoreactor with co-factor regeneration for conversion of CO 2[J].
[52] VAN DER DONK W A, ZHAO H M. Recent developments in International Journal of Biological Macromolecules, 2020, 155:
pyridine nucleotide regeneration[J]. Current Opinion in Biotechnology, 110-118.
2003, 14(4): 421-426. [58] BACCOUR M, LAMOTTE A, SAKAI K, et al. Production of
[53] MARPANI F, SAROSSY Z, PINELO M, et al. Kinetics based formate from CO 2 gas under ambient conditions: Towards flow-
reaction optimization of enzyme catalyzed reduction of formaldehyde through enzyme reactors[J]. Green Chemistry, 2020, 22(12): 3727- 3733.
to methanol with synchronous cofactor regeneration[J]. Biotechnology [59] TAN T W (谭天伟), CHEN B Q (陈必强), ZHANG H L (张会丽),
and Bioengineering, 2017, 114(12): 2762-2770. et al. Accelerate promotion of green bio-manufacturing to help
[54] UNLU A, DUMAN-OZDAMAR Z E, CALOGLU B, et al. Enzymes achieve "carbon neutrality"[J]. Chemical Industry and Engineering
for efficient CO 2 conversion[J]. Protein J, 2021, 40(4): 489-503. Progress (化工进展), 2021, 40(3): 1137-1141.
[55] WANG X, LI Z, SHI J, et al. Bioinspired approach to multienzyme [60] LIU Z, WANG K, CHEN Y, et al. Third-generation biorefineries as
cascade system construction for efficient carbon dioxide reduction[J]. the means to produce fuels and chemicals from CO 2[J]. Nature
ACS Catalysis, 2014, 4(3): 962-972. Catalysis, 2020, 3(3): 274-288.