Page 233 - 《精细化工)》2023年第10期
P. 233
第 10 期 岳 闯,等: 微纳米 SiO 2 改性沥青的制备及性能评价 ·2311·
触所致。 [13] GHOLAM H H. Evaluating the effect of asphalt binder modification
using nanomaterials on the moisture damage of hot mix asphalt[J].
(5)微纳米 PEI-SiO 2 对沥青均有良好的改善效
Road Materials and Pavement Design, 2017, 18(6): 1375-1394.
果,在高温地区高速公路铺设方面具备很大的应用 [14] KARNATI S R, OLDHAM D, FINI E H, et al. Surface
潜力。但由于纳米级 SiO 2 高昂的价格,目前更建议 functionalization of silica nanoparticles to enhance aging resistance
of asphalt binder[J]. Construction and Building Materials, 2019, 211:
采用微米级 SiO 2 进行改性。如果未来纳米粒子的制 1065-1072.
造工艺能够进一步优化,价格可以有所降低,那么 [15] KANG Y, WANG F, CHEN Z M. Reaction of asphalt and maleic
anhydride: Kinetics and mechanism[J]. Chemical Engineering
纳米级 SiO 2 改性沥青将拥有更好的发展。
Journal, 2010, 164: 230-237.
[16] LUO S, TIAN J H, LIU Z M, et al. Rapid determination of
参考文献:
styrene-butadiene-styrene (SBS) content in modified asphalt based
[1] National Bureau of Statistics of the People's Republic of China (中华 on Fourier transform infrared (FTIR) spectrometer and linear
人民共和国国家统计局 ). Statistical Bulletin of the People’s regression analysis[J]. Measurement, 2020, 151: 107204.
Republic of China on National Economic and Social Development [17] SAMYN P. Confined crystallization of thin plasma-polymerized
(中华人民共和国国民经济和发展统计公报)[R]. 2017-2021. nanocomposite films with maleic anhydride and cellulose nanocrystals
[2] GAO J, YAO Y Q, SONG L, et al. Determining the maximum under hydrolysis[J]. Molecules, 2022, 27(17): 5863.
permissible content of recycled asphalt pavement stockpile in plant [18] CHEN Y L (陈玉磊), WANG W (王伟), DAI Y T (戴亚堂), et al.
hot-mix recycled asphalt mixtures considering homogeneity: A case Preparation of poly(ethylenimine) functional Fe 3O 4 nanoparticles[J].
study in China[J]. Case Studies in Construction Materials, 2022, 16: Fine Chemicals (精细化工), 2015, 32(10): 1098-1101.
e00961. [19] GHADIMI A, SAIDUR R, METSELAAR H S C. A review of
[3] GAO J, YANG J G, YU D, et al. Reducing the variability of nanofluid stability properties and characterization in stationary
multi-source reclaimed asphalt pavement materials: A practice in conditions[J]. International Journal of Heat and Mass Transfer, 2011,
China[J]. Construction and Building Materials, 2021, 278: 122389. 54(17/18): 4051-4068.
[4] REN S S, LIU X Y, FAN W, et al. Rheological properties, [20] LI M, CHENG F, XUE C Y, et al. Surface modification of stöber
compatibility, and storage stability of SBS latex-modified asphalt[J]. silica nanoparticles with controlled moiety densities determines their
Materials, 2019, 12(22): 3683. cytotoxicity profiles in macrophages[J]. Langmuir, 2019, 35(45):
[5] LI H Y, JIANG H L, ZHANG W W, et al. Laboratory and field 14688-14695.
investigation of the feasibility of crumb rubber waste application to [21] SHI X J, ZHAN W J, CHEN G J, et al. Regulation of protein binding
improve the flexibility of anti-rutting performance of asphalt capability of surfaces via host-guest interactions: Effects of localized
pavement[J]. Materials, 2018, 11(9): 1783. and average ligand density[J]. Langmuir, 2015, 31(22): 6172-6178.
[6] KASSEM E, KHAN M S, KATUKURI S, et al. Retarding aging of [22] LI R Y, XIAO F P, AMIRKHANIAN S, et al. Developments of nano
asphalt binders using antioxidant additives and copolymers[J]. materials and technologies on asphalt materials-A review[J].
International Journal of Pvement Engineering, 2019, 20(10): Construction and Building Materials, 2017, 143: 633-648.
1154-1169. [23] XIA T, ZHOU L M, LAN S W, et al. SBS modified bitumen in the
[7] NAZARI H, NADERI K, MOGHADAS N F, et al. Improving aging presence of hydrophilic or hydrophobic silica nanoparticles[J].
resistance and fatigue performance of asphalt binders using inorganic Construction and Building Materials, 2017, 153: 957-964.
nanoparticles[J]. Construction and Building Materials, 2018, 170: [24] GE D D, CHEN S Y, YOU Z P, et al. Correlation of DSR results and
591-602. FTIR's carbonyl and sulfoxide indexes: Effect of aging temperature
[8] SHI X G, CAI L C, XU W, et al. Effects of nano-silica and rock on asphalt rheology[J]. Journal of Materials in Civil Engineering,
asphalt on rheological properties of modified bitumen[J]. Construction 2019, 31(7): 04019115.
and Building Materials, 2018, 161: 705-714. [25] YE F, YIN W, LU H, et al. Property improvement of nano-
[9] FINI E H, HAJIKARIMI P, RAHI M, et al. Physiochemical, montmorillonite/SBS modified asphalt binder by naphthenic oil[J].
rheological, and oxidative aging characteristics of asphalt binder in Construction and Building Materials, 2020, 243: 118200.
the presence of mesoporous silica nanoparticles[J]. Journal of Materials [26] TAUSTE R, MORENO-NAVARRO F, SOL-SANCHEZ M, et al.
Civil Engineering, 2016, 28(2): 401-408. Understanding the bitumen ageing phenomenon: A review[J].
[10] QIAN G P, YANG C D, HUANG H D, et al. Resistance to ultraviolet Construction and Building Materials, 2018, 192: 593-609.
aging of nano-SiO 2 and rubber powder compound modified [27] ZHANG S, HONG H K, ZHANG H L, et al. Investigation of
asphalt[J]. Materials, 2020, 13(22): 5067. anti-aging mechanism of multi-dimensional nanomaterials modified
[11] SALTAN M, TERZI S, KARAHANCER S, et al. Examination of hot asphalt by FTIR, NMR, GPC[J]. Construction and Building
mix asphalt and binder performance modified with nano silica[J]. Materials, 2021, 305: 124809.
Construction and Building Materials, 2017, 156: 976-984. [28] PETERSEN J C, BARBOUR F A, DORRENCE S M. Catalysis of
[12] HE H Q, HU J L, LI R, et al. Study on rheological properties of silica asphalt oxidation by mineral aggregate surfaces and asphalt
nanofluids modified asphalt binder[J]. Construction and Building components[J]. Association of Asphalt Paving Technology, 1974, 43:
Materials, 2021, 273: 122046. 162-177.