Page 135 - 《精细化工》2023年第3期
P. 135

第 3 期                   王   兴,等:  改性 PU 海绵三维多孔界面蒸发器的制备及性能                                ·591·


            2.9   三维多孔界面蒸发器的稳定性测试                              3   结论
                 考虑到三维多孔界面蒸发器在户外的实际应用
            中会遭受长时间严重的紫外线照射,因此对大小为                                 通过采用 PVA 对 PU 海绵进行亲水改性,并在
            3 cm×3 cm×1 cm的三维多孔界面蒸发器的超疏水表                      其上表面喷涂 MWCNTs/PDMS 复合分散液,获得亲
            面的稳定性进行了测试,三维多孔界面蒸发器距离                             水/超疏水三维多孔界面蒸发器。该三维多孔界面蒸
            紫外灯(300 W)25 cm,经不同时间照射后的表面                        发器具有良好的光热性能、蒸发性能、拒盐性能、
            水接触角见图 12。                                         自清洁性能。在海水淡化过程中,三维多孔界面蒸
                                                                                             2
                 从图 12 可以看出,随着紫外灯照射时间的延                        发器在一个太阳光强(1.0 kW/m )下表面温度达
            长,三维多孔界面蒸发器表面水滴的接触角从 0 h                           61.3  ℃、吸收率为 98.57%,并且蒸发速率可达
                                                                       2
            时的 160.0°降至 24 h 时的 156.7°。可能是因为长时                 1.8 kg/(m ·h)。同时,三维多孔界面蒸发器表面的自
            间的紫外照射,对三维多孔界面蒸发器表面造成了                             清洁性能可避免光热涂层被污物污染,从而保障其
            氧化损伤,导致部分低表面能物质分解,但仍保持                             光热转换效率的持续耐久性。因此,本文制备的三
            超疏水性。表明三维多孔界面蒸发器在 24 h 照射时                         维多孔界面蒸发器可为淡水资源短缺且能源匮乏地
            间内有着较好的抗紫外线性能。                                     区解决用水难题,应用前景广泛。

                                                               参考文献:
                                                               [1]   ZHANG P P, LI J, LV L X, et al. Vertically aligned graphene sheets
                                                                   membrane for highly efficient solar thermal generation of clean
                                                                   water[J]. ACS Nano, 2017, 11: 5087-5093.
                                                               [2]   LI R Y, ZHANG L B, SHI L, et al. Mxene Ti 3C 2: An effective 2D
                                                                   light-to-heat conversion material[J]. ACS Nano, 2017, 11: 3752-3759.
                                                               [3]   TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J].
                                                                   Nature Energy, 2018, 3: 1031-1041.
                                                               [4]   YANG T, LIN H, LIN K T, et al. Carbon-based absorbers for solar
                                                                   evaporation: Steam generation and beyond[J]. Sustainable Materials
                                                                   and Technologies, 2020, 25: e00182.
                                                               [5]   QIBLAWEY H M, BANAT F. Solar thermal desalination technologies[J].
                                                                   Desalination, 2008, 220(1/2/3): 633-644.
                                                               [6]   OKI T, KANAE  S. Global hydrological cycles and world water
                                                                   resources[J]. Science, 2006, 313(5790): 1068-1072.
                                                               [7]   THIRUGNANASAMBANDAM M, INIYAN S, GOIC R. A review
                                                                   of solar thermal technologies[J]. Renewable and Sustainable Energy
            图 12   三维多孔界面蒸发器经不同时间紫外灯照射后的                           Reviews, 2010, 14(1): 312-322.
                   表面水接触角                                      [8]   HU R, ZHANG J Q, KUANG Y D, et al. A Janus evaporator with
                                                                   low tortuosity for long-term solar desalination[J]. Journal of
            Fig. 12  Surface water contact angle of 3D porous interfacial   Materials Chemistry A, 2019, 7(25): 15333-15340.
                   evaporator  after ultraviolet irradiation for different   [9]   ZHOU X Y, GUO Y H, ZHAO F, et al. Hydrogels as an emerging
                   time                                            material platform for solar water purification[J]. Accounts of
                                                                   Chemical Research, 2019, 52(11): 3244-3253.
                                                               [10]  MA C, LIU Q L, PENG  Q  Q,  et al. Biomimetic hybridization of
                 采用装有 180 g 质量分数为 3.5%的 NaCl 溶液                    Janus-like graphene oxide into  hierarchical porous hydrogels for
                                                                   improved mechanical properties and efficient solar  desalination
            的 250 mL 烧杯评价了三维多孔界面蒸发器连续工                             devices[J]. ACS Nano, 2021, 15(12): 19877-19887.
                                                               [11]  WERBER J  R,  OSUJI C O, ELIMELECH  M. Materials for next-
            作多天的蒸发速率,结果见图 13。                                      generation desalination and water purification membranes[J]. Nature
                                                                   Reviews Materials, 2016, 1(5): 16018.

                                                               [12]  LIU Y M, YU S T, FENG R, et al. A bioinspired, reusable, paper-
                                                                   based system for high-performance large-scale evaporation[J].
                                                                   Advanced Materials, 2015, 27: 2768-2774.
                                                               [13]  ZHOU  L, TAN  Y L, WANG J Y,  et al. 3D self-assembly of
                                                                   aluminium nanoparticles for plasmon-enhanced solar desalination[J].
                                                                   Nature Photonics, 2016, 10: 393-398.
                                                               [14]  LI X Q, XU  W  C,  TANG M Y,  et al. Oxide-based efficient and
                                                                   scalable solar desalination under one sun with a confined 2D water
                                                                   path[J]. Proceedings of  the National  Academy of Science of the
                                                                   United States of America, 2016, 113: 13953-13958.
                                                               [15]  XU N,  HU X  Z,  XU W C,  et al. Mushrooms as efficient solar
                                                                   steam-generation devices[J]. Advanced Materials, 2017, 29: 1606762.
                                                               [16]  ZHANG  B P, GU Q F, WANG C,  et al. Self-assembled
                                                                   hydrophobic/hydrophilic porphyrin-Ti 3C 2T x MXene Janus membrane
                                                                   for  dual-functional enabled photothermal desalination[J]. ACS
                                                                   Applied Materials & Interfaces, 2021, 13(3): 3762-3770.
                                                               [17]  ZHAO  X, CHEN  Y Y, CHEN  Y,  et al. Janus polypyrrole
                                                                   nanobelt@polyvinyl alcohol hydrogel evaporator for  robust solar-
              图 13   三维多孔界面蒸发器连续工作多天的蒸发速率                          thermal seawater  desalination and  sewage purification[J]. ACS
                                                                   Applied Materials & Interfaces, 2021, 13(39): 46717-46726.
            Fig. 13  Evaporation rate of 3D porous interface evaporator   [18]  LV B, GAO C, XU Y L, et al. A self-floating, salt-resistant 3D Janus
                    with continuous working days                   radish-based evaporator for highly efficient solar desalination[J].
                                                                   Desalination, 2021, 510: 115093.
                 从图 13 可以看出,三维多孔界面蒸发器在每天                       [19]  XU N, LI J L, WANG Y,  et al. A water  lily-inspired  hierarchical
                                                                   design for stable  and efficient solar evaporation of  high-salinity
                                                                   brine[J]. Science Advances, 2019, 5(7): eaaw7013.
            光照 6 h,连续海水淡化 8 d,蒸发速率基本保持稳定,                      [20]  ANJUM A S, SUN K C, ALI M,  et al. Fabrication  of coral-reef
            表明其在连续 8 d 的海水淡化中有着较好的稳定性。                             structured nano silica for self-cleaning and super-hydrophobic textile
                                                                   applications[J]. Chemical Engineering Journal, 2020, 401: 125859.
   130   131   132   133   134   135   136   137   138   139   140