Page 199 - 《精细化工》2023年第3期
P. 199
第 3 期 徐振光,等: 玉米淀粉/生物基碳点复合光转换薄膜的制备及性能 ·655·
从图 7 中发射谱图可以看出,该复合薄膜转光 [10] Editor-in-chief of Beijing Agricultural University (北京农业大学主
编). Plant physiology[M]. Beijing: China Agricultural Press (中国农
效果明显,CST 无荧光响应,随着 P(CS-g-CA)CDs
业出版社), 1980.
用量的增加,薄膜的荧光强度逐渐增大,其中, [11] QIN L J (秦立洁), TIAN Y (田岩). Study on the light conversion
CST/P(CS-g-CA)CDs20 的荧光强度最强,转光性能 performance of high light energy agricultural film[J]. China Plastics
(中国塑料), 2002, (3): 55-61.
较好,能有效将 374 nm 处紫外光区的光转换为 459 nm [12] LIU R T (刘若同), LI H L (李会利). Synthesis and luminescence
的蓝色荧光。说明 CST/P(CS-g-CA)CDs20 复合薄膜 properties of carbon quantum dots for light conversion thin films[J].
Chemistry World (化学世界), 2019, 60(8): 533-537.
具有作为转光膜的潜在应用价值,可用于农用地膜 [13] ZHAO C P (赵驰鹏), JI B Y (纪冰祎), LIU J L (刘家磊). Research
辅助植物生长。 on the development dilemma and countermeasures of agricultural
light conversion film[J]. Agricultural Economics (农业经济), 2022, (2):
3 结论 37-38.
[14] YU S J (于淑娟), WANG F (汪丰), LUO Z J (罗振静), et al.
Synthesis of chitosan-based polymer dot fluorescent materials and
(1)采用流延方法成功制备了 CST/P(CS-g-CA) their anti-ultraviolet aging properties on paper[J]. J Lumin (发光学
CDs 复合薄膜,对其进行了红外光谱、热学性能、 报), 2017, 38(11): 1443-1449.
[15] WANG F (汪丰). Preparation of chitosan-based polymeric carbon dot
力学性能、降解性能和转光性能等分析。随着
fluorescent nanomaterials and their applications[D]. Guilin: Guangxi
P(CS-g-CA)CDs 用量的增加,复合薄膜热稳定性得 Normal University (广西师范学院), 2018.
[16] ZOU Y Y, YUAN C, CUI B, et al. High-amylose corn starch/konjac
到提高,拉伸强度先升高后下降,断裂伸长率和接
glucomannan composite film: Reinforced by incorporating β-cyclodextrin
触角逐渐增加。对该复合薄膜进行了生物降解性能 [J]. J Agric Food Chem, 2021, 69: 2493-2500.
测试,结果表明,随着 P(CS-g-CA)CDs 用量的增加 [17] CHEN P, PENG H, ZHANG Z, et al. Facile preparation of highly
thermosensitive N-doped carbon dots and their detection of temperature
该复合薄膜生物降解速率减缓。 and 6-mercaotopurine[J]. Microchem J, 2021, 171: 106835.
(2)该复合薄膜具有一定的转光效果,其中 [18] LI X M, ZHANG S L, KULINICH S A, et al. Engineering surface
states of carbon dots to achieve controllable luminescence for solid-
CST/P(CS-g-CA)CDs20 的转光效果最好,可将 2+
luminescent composites and sensitive Be detection[J]. Sci Rep,
374 nm 处紫外光区的光转换为 459 nm 利于作物生 2014, 4: 4976.
长的蓝色荧光,有望应用于农用转光膜领域。 [19] YUN D W, CAI H H, LIU Y P, et al. Development of active and
intelligent films based on cassava starch and Chinese bayberry
(Myricarubra Sieb. et Zucc.) anthocyanins[J]. RSC Adv, 2019, 9:
参考文献: 30905-30916.
[1] MENDES J F, PASCHOALIN R T, CARMONA V B, et al. [20] XIE W, BAO Q R, LIU Y, et al. Hydrogen bond association to
Biodegradable polymer blends based on corn starch and thermoplastic prepare flame retardant polyvinyl alcohol film with high performance
chitosan processed by extrusion[J]. Carbohydr Polym, 2016, 137: [J]. ACS Appl Mater Interfaces, 2021, 13: 5508-5517.
452-458. [21] RAMIREZ J A, ARENAS J V, HERNÁNDEZ A G, et al. Improving
+
[2] OTHMAN S H. Bio-nanocomposite materials for food packaging the mechanical performance of green starch/glycerol/Li conductive
2+
applications: Types of biopolymer and nano-sized filler[J]. Agric Sci films through cross-linking with Ca [J]. Solid State Ionics, 2019,
Procedia, 2014, 2: 296-303. 332: 1-9.
[3] SHAPI'I R A, OTHMAN S H, NORDIN N, et al. Antimicrobial [22] ZHAO H Y (赵海燕), LI W X (李文香), ZHANG S L (张双灵), et al.
properties of starch films incorporated with chitosan nanoparticles: In Effect of nano-rutin-zein particles on the properties of corn starch film[J].
vitro and in vivo evaluation[J]. Carbohydr Polym, 2020, 230: 115602. Food Science and Technology (食品科技), 2017, 42(7): 223-228.
[4] CAI T, SUN H, QIAO J, et al. Cell-free chemoenzymatic starch [23] LIU D, DANG S, ZHANG L, et al. Corn starch/polyvinyl alcohol
synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. based films incorporated with curcumin-loaded Pickering emulsion
[5] MOHAMED S A A, EL-SAKHAWY M, EL-SAKHAWY M A N. for application in intelligent packaging[J]. Int J Biol Macromol,
Polysaccharides, protein and lipid-based natural edible films in food 2021, 188: 974-982.
packaging: A review[J]. Carbohydr Polym, 2020, 238: 116178. [24] LIU H P (刘海鹏), FENG L (冯磊), LI L (李玲), et al. Preparation,
[6] KANATT S R, MAKWANA S H. Development of active, water- characterization and performance of lotus root starch/whey protein
resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe verapackaging composite film composite membrane[J]. Fine Chemicals (精细化工),
film[J]. Carbohydr Polym, 2020, 227: 115303. 2022, 39(6): 1228-1232, 1249.
[7] MAO H H (毛惠会), XUE M Y (薛茗月), HAN G C (韩国成). [25] HOU J M, YAN X X. Preparation of chitosan-SiO 2 nanoparticles by
Synthesis, properties and applications of fluorescent carbon dots[J]. ultrasonic treatment and its effect on the properties of starch film[J].
Functional Materials (功能材料), 2021, 52(1): 1053-1063. Int J Biol Macromol, 2021, 189: 271-278.
[8] LI J H (黎剑辉), ZHUANG S L (庄少玲). Research progress on the [26] DAI L M, YU H J, ZHANG J, et al. Preparation and characterization
preparation of carbon dots[J]. Rare Metal Materials and Engineering of cross-linked starch nanocrystals and self-reinforced starch-based
(稀有金属材料与工程), 2019, 48(10): 3401-3416. nanocomposite films[J]. Int J Biol Macromol, 2021, 181: 868-876.
[9] ZHANG P (张盼), ZHAO S S (赵顺省), WANG Y K (王雅坤). [27] MUSTAPHA S N H, WAN J S. Effect of hybridization composition
Research progress on synthesis and application of fluorescent carbon and glycerin content on novel corn starch/nata de coco plastic film:
dots[J]. Functional Materials (功能材料), 2020, 51(2): 2019-2026, Thermal, mechanical, and degradation study[J]. Food Chem, 2022,
2060. 373: 13144.