Page 31 - 《精细化工》2023年第3期
P. 31
第 3 期 李雨晴,等: 硅酸钙类骨水泥改性研究进展 ·487·
2016, 42(7): 9183-9189. [69] LIU W C, WANG H Y, CHEN L C, et al. Hydroxyapatite/tricalcium
[50] DING S J, WEI C K, LAI M H. Bio-inspired calcium silicate-gelatin silicate composites cement derived from novel two-step sol-gel
bone grafts for load-bearing applications[J]. Journal of Materials process with good biocompatibility and applications as bone cement
Chemistry, 2011, 21(34): 12793-12802. and potential coating materials[J]. Ceramics International, 2019,
[51] PERUMAL G, RAMASAMY B, NANDKUMAR A M, et al. Influence 45(5): 5668-5679.
of magnesium particles and pluronic F127 on compressive strength [70] DING Z W, XI W J, JI M Z, et al. The improvement of the
and cytocompatibility of nanocomposite injectable and moldable self-setting property of the tricalcium silicate bone cement with acid
beads for bone regeneration[J]. Journal of the Mechanical Behavior and its mechanism[J]. Journal of Physics and Chemistry of Solids,
of Biomedical Materials, 2018, 88: 453-462. 2021, 150: 109825.
[52] CUI X, ZHANG Y, WANG H, et al. An injectable borate bioactive [71] WU I T, CHU Y H, HUANG Y R, et al. Antibacterial ability and
glass cement for bone repair: Preparation, bioactivity and setting osteogenic activity of polyphenol-tailored calcium silicate bone
mechanism[J]. Journal of Non-Crystalline Solids, 2016, 432: 150-157. cement[J]. Journal of Materials Chemistry B, 2022, 10(24):
[53] GIBSON L J. The mechanical behaviour of cancellous bone[J]. 4640-4649.
Journal of Biomechanics, 1985, 18(5): 317-328. [72] GOU Z G, CHANG J, ZHAI W Y, et al. Study on the self-setting
[54] DONG D, SU H J, LI X, et al. Microstructures and mechanical property and the in vitro bioactivity of beta-Ca 2SiO 4[J]. Journal of
properties of biphasic calcium phosphate bioceramics fabricated by Biomedical Materials Research, Part B:Applied Biomaterials, 2005,
SLA 3D printing[J]. Journal of Manufacturing Processes, 2022, 81: 73(2): 244-251.
433-443. [73] MARCELO T S, RICARDO D M P, JOSÉ D S A N, et al.
[55] WEN J, ZHANG Y R, MA T T, et al. Degradation properties of Single-burn clinkering of endodontic calcium silicate-based cements:
magnesium oxychloride bone cement composite modified by Effects of ZnO in the C 3S phase formation and hydration rate[J].
hydroxypropyl methylcellulose and KH 2PO 4[J]. Journal of Materials Materials Letters, 2022, 311: 131556.
Research and Technology, 2021, 15: 6659-6669. [74] LI G X, WANG W Z, ZHANG G. Effects of slag on the degradation
[56] KONG D Y, LIN G M, SHI Y B, et al. Performance of heterotopic mechanism of ordinary portland cement-calcium aluminate cement-
bone elicited with bone morphogenic protein-2 microspheres as a bone gypsum ternary binder under the multiple erosive ions[J]. Construction
repair material[J]. Materials & Design, 2020, 191: 108657. and Building Materials, 2022, 324: 126661.
[57] TANG Y F, CHEN L, WU Z X, et al. Fabrication of injectable and [75] CHEN C C, LAI M H, WANG W C, et al. Properties of anti-
expandable PMMA/PAASf bone cements[J]. Composites Science washout-type calcium silicate bone cements containing gelatin[J].
and Technology, 2017, 146: 203-209. Journal of Materials Science-Materials in Medicine, 2010, 21(4):
[58] ELTOHAMY M, KUNDU B, MOON J, et al. Anti-bacterial 1057-1068.
zinc-doped calcium silicate cements: Bone filler[J]. Ceramics [76] KUMAR D V, SUBRAMANIAM S K T, MUKESH D, et al.
International, 2018, 44(11): 13031-13038. Fabrication of macroporous apatite bone cements for non-load
[59] LIU W C, HU C C, TSENG Y Y, et al. Study on strontium doped bearing orthopedic applications[J]. Journal of Biomedical Materials
tricalcium silicate synthesized through sol-gel process[J]. Materials Research, Part B: Applied Biomaterials, 2023, 111(2): 416-428.
Science and Engineering, 2020, 108(C): 110431. [77] HUANG T H, KAO C T, SHEN Y F, et al. Substitutions of strontium
[60] ZHANG R G, HU J B, CHEN H, et al. A novel degradable tricalcium in bioactive calcium silicate bone cements stimulate osteogenic
silicate/calcium polyphosphate/polyvinyl alcohol organic-inorganic differentiation in human mesenchymal stem cells[J]. Journal of
composite cement for bone filling[J]. Journal of Biomaterials Materials Science-Materials In Medicine, 2019, 30(6): 68.
Applications, 2021, 36(5): 772-788. [78] CHEN C C, WANG W C, DING S J. In vitro physiochemical
[61] SHIE M Y, CHIANG W H, CHEN I W P, et al. Synergistic properties of a biomimetic gelatin/chitosan oligosaccharide/calcium
acceleration in the osteogenic and angiogenic differentiation of silicate cement[J]. Journal of Biomedical Materials Research, Part B:
human mesenchymal stem cells by calcium silicate-graphene composites[J]. Applied Biomaterials, 2010, 95(2): 456-465.
Materials Science and Engineering, 2017, 73(C): 726-735. [79] LIN M C, CHEN C C, WU I T, et al. Enhanced antibacterial activity
[62] TANG J, CAO W J, ZHANG Y, et al. Properties of vaterite- of calcium silicate-based hybrid cements for bone repair[J]. Materials
containing tricalcium silicate composited graphene oxide for Science and Engineering, 2020, 110(C): 110727.
biomaterials[J]. Biomedical Materials, 2019, 14(4): 045004. [80] KIM S, PARK C B. Mussel-inspired transformation of CaCO 3 to
[63] SHA S, QIU F, LIU J X, et al. Physico-chemical and biological bone minerals[J]. Biomaterials, 2010, 31(25): 6628-6634.
properties of novel Eu-doped carbonization modified tricalcium [81] WANG C, XUE Y, LIN K L, et al. The enhancement of bone
silicate composite bone cement[J]. Ceramics International, 2022, regeneration by a combination of osteoconductivity and osteostimulation
48(10): 13484-13493. using beta-CaSiO 3/beta-Ca 3(PO 4) 2 composite bioceramics[J]. Acta
[64] LIU W J, ZHAI D, HUAN Z G, et al. Novel tricalcium silicate/ Biomaterialia, 2012, 8(1): 350-360.
magnesium phosphate composite bone cement having high compressive [82] CHAI F, NICOLAS B, ANNIE L, et al. In vitro studies on the
strength, in vitro bioactivity and cytocompatibility[J]. Acta Biomaterialia, influence of precultural conditioning method on osteoblast reactions
2015, 21: 217-227. of a new type of injectable calcium cement material[J]. Journal of
[65] LEWIS G. Injectable bone cements for use in vertebroplasty and Biomedical Materials Research, Part B: Applied Biomaterials, 2006,
kyphoplasty: State-of-the-art review[J]. Journal of Biomedical Materials 77(1): 104-113.
Research, Part B: Applied Biomaterials, 2006, 76(2): 456-468. [83] HUAN Z, CHANG J. Self-setting properties and in vitro bioactivity
[66] HUAN Z G, CHANG J. Study on physicochemical properties and in of calcium sulfate hemihydrate-tricalcium silicate composite bone
vitro bioactivity of tricalcium silicate-calcium carbonate composite cements[J]. Acta Biomaterialia, 2007, 3(6): 952-960.
bone cement[J]. Journal of Materials Science-Materials in Medicine, [84] ZHAO W, CHANG J, ZHAI W. Self-setting properties and in vitro
2008, 19(8): 2913-2918. bioactivity of Ca 3SiO 5/CaSO 4 center dot 1/2H 2O composite cement[J].
[67] WANG D G, ZHANG Y, HONG Z R. Novel fast-setting chitosan/ Journal of Biomedical Materials Research, Part A, 2008, 85(2):
β-dicalcium silicate bone cements with high compressive strength 336-344.
and bioactivity[J]. Ceramics International A, 2014, 40(7): 9799-9808. [85] ZHAO W Y, WANG J W, ZHAI W Y, et al. The self-setting properties
[68] LIU W N, CHANG J, YUE Z. Physicochemical properties and and in vitro bioactivity of tricalcium silicate[J]. Biomaterials, 2005,
biocompatibility of tricalcium and dicalcium silicate composite 26(31): 6113-6121.
cements after hydration[J]. International Journal of Applied Ceramic
Technology, 2011, 8(3): 560-565. (下转第 510 页)