Page 40 - 《精细化工》2023年第3期
P. 40

·496·                             精细化工   FINE CHEMICALS                                 第 40 卷

                 measurements[J]. Environmental Engineering  Science,  2002, 19:   liquid/fluid interfaces: Shape effects induced by line tension[J]. The
                 413-427.                                          Journal of Chemical Physics, 2003, 118: 6518-6528.
            [58]  YIN  T H, YANG  Z H,  LIN M Q,  et al. Aggregation kinetics and   [74]  FARAUDO J, BRESME F. Interplay between thermodynamics and
                 colloidal stability of amphiphilic  Janus nanosheets  in aqueous   geometry in the  adsorption of non-spherical nanoparticles at
                 solution[J]. Industrial & Engineering Chemistry Research, 2019, 58:   liquid/liquid interfaces[J]. Journal of Non-Equilibrium Thermodynamics,
                 4479-4486.                                        2004, 29: 397-404.
            [59]  REZVANTALAB H, DRAZER G, SHOJAEI-ZADEH S. Molecular   [75]  BRESME F, OETTEL M. Nanoparticles at fluid interfaces[J]. Journal
                 simulation of translational and rotational diffusion of Janus nanoparticles   of Physics: Condensed Matter, 2007, 19: 413101.
                 at liquid interfaces[J]. The Journal of Chemical Physics, 2015, 142:   [76]  NONOMURA Y, KOMURA S, TSUJII K. Adsorption of disk-shaped
                 014701.                                           Janus beads at liquid-liquid interfaces[J]. Langmuir, 2004, 20: 11821-
            [60]  PAULISTA N A J, FILETI E E. Impact of edge groups on the   11823.
                 hydration and aggregation properties of graphene oxide[J]. The   [77]  CREIGHTON M  A, OHATA  Y, MIYAWAKI J,  et al. Two-
                 Journal of Physical Chemistry B, 2018, 122: 2578-2586.   dimensional materials as emulsion stabilizers: Interfacial thermodynamics
            [61]  YIN T H,  YANG  Z H,  ZHANG F F,  et al. Probing the  impact of   and molecular barrier properties[J]. Langmuir, 2014, 30: 3687-3696.
                 surface chemistry on the microscopic interactions between amphiphilic   [78]  RAZAVI S, LIN  B H, LEE K  Y  C,  et al. Impact  of surface
                 Janus nanosheets and water[J]. Industrial & Engineering Chemistry   amphiphilicity on the interfacial behavior of Janus particle layers
                 Research, 2020, 59: 14344-14351.                  under compression[J]. Langmuir, 2019, 35: 15813-15824.
            [62]  TANG H, ZHAO Y, YANG X N, et al. Understanding the roles of   [79]  RAZAVI S, KOPLIK J, KRETZSCHMAR I. The effect of capillary
                 solution chemistries and functionalization  on the aggregation  of   bridging  on  the Janus particle stability at the interface of two
                 graphene-based nanomaterials using molecular dynamic simulations   immiscible liquids[J]. Soft Matter, 2013, 9: 4585-4589.
                 [J]. The Journal of Physical Chemistry C, 2017, 121: 13888-13897.   [80]  FERNANDEZ-RODRIGUEZ M A, SONG Y, RODRÍGUEZ-
            [63]  MUKHOPADHYAY  T K, DATTA  A. Deciphering the role of   VALVERDE M Á,  et al. Comparison of the interfacial activity
                 solvents in the liquid phase exfoliation of hexagonal boron nitride: A   between homogeneous and Janus gold nanoparticles by pendant drop
                 molecular dynamics simulation study[J].  The Journal of Physical   tensiometry[J]. Langmuir, 2014, 30: 1799-1804.
                 Chemistry C, 2017, 121: 811-822.              [81]  LENIS J, RAZAVI S, CAO K D,  et al. Mechanical stability of
            [64]  KHARAZMI A, PRIEZJEV N V. Diffusion of a Janus nanoparticle in   polystyrene and Janus particle  monolayers at the air/water
                 an explicit solvent: A molecular dynamics simulation study[J]. The   interface[J]. Journal of the American Chemical Society,  2015, 137:
                 Journal of Chemical Physics, 2015, 142: 234503.   15370-15373.
            [65]  KHARAZMI A, PRIEZJEV N V. Molecular dynamics simulations of   [82]  RAZAVI S, HERNANDEZ L  M, READ A,  et al. Surface tension
                 the rotational and translational diffusion of a Janus rod-shaped   anomaly observed for chemically-modified  Janus particles at the
                 nanoparticle[J]. The Journal of Physical Chemistry B, 2017, 121:   air/water interface[J]. Journal of Colloid and Interface Science, 2020,
                 7133-7139.                                        558: 95-99.
            [66]  LUO D, ZHANG F H, DING F Z,  et al. Interactions between   [83]  WEI P R, LUO Q M, EDGEHOUSE K J,  et al. 2D particles at
                 amphiphilic Janus nanosheets and a nonionic polymer in aqueous and   fluid-fluid interfaces: Assembly and templating of hybrid structures
                 biphasic systems[J]. Soft Matter, 2019, 15: 7472-7478.   for advanced applications[J]. ACS Applied Materials & Interfaces,
            [67]  LUO D, WANG F, CHEN J F, et al. Poly(sodium 4-styrenesulfonate)   2018, 10: 21765-21781.
                 stabilized Janus nanosheets in brine with retained amphiphilicity[J].   [84]  REZVANTALABA H, SHOJAEI-ZADEH S. Capillary interactions
                 Langmuir, 2018, 34: 3694-3700.                    between spherical  Janus particles at liquid-fluid interfaces[J]. Soft
            [68]  FERNANDEZ-RODRIGUEZ M A,  RODRIGUEZ-VALVERDE M   Matter, 2013, 9: 3640-3650.
                 A, CABRERIZO-VILCHEZ M  A,  et al. Surface activity of  Janus   [85]  BRADLEY L C, CHEN W H, STEBE K J, et al. Janus and patchy
                 particles adsorbed at  fluid-fluid interfaces: Theoretical and   colloids at fluid interfaces[J]. Current Opinion in Colloid & Interface
                 experimental aspects[J]. Advances in Colloid and Interface Science,   Science, 2017, 30: 25-33.
                 2016, 233: 240-254.                           [86]  XIANG W J, ZHAO S L, SONG X Y, et al. Amphiphilic nanosheet
            [69]  KUMAR A, PARK B J, TU F Q, et al. Amphiphilic Janus particles at   self-assembly at the water/oil interface: Computer simulations[J].
                 fluid interfaces[J]. Soft Matter, 2013, 9: 6604-6617.   Physical Chemistry Chemical Physiccs, 2017, 19: 7576-7586.
            [70]  TANAKA T, OKAYAMA M, MINAMI H, et al. Dual stimuliresponsive   [87]  RUHLAND T M, GRÖSCHEL A H, BALLARD N, et al. Influence
                 "mushroom-like" Janus polymer particles as particulate  surfactants   of Janus particle shape on their interfacial behavior at liquid-liquid
                 [J]. Langmuir, 2010, 26: 11732-11736.             interfaces[J]. Langmuir, 2013, 29: 1388-1394.
            [71]  JIANG S, GRANICK S. Janus  balance of amphiphilic colloidal   [88]  YIN T H, YANG Z H, ZHANG F F, et al. Assembly and mechanical
                 particles[J]. The Journal of Chemical Physics, 2007, 127: 161102.   response of amphiphilic Janus nanosheets at oil-water interfaces[J].
            [72]  BINKS B P, FLETCHER P D I. Particles adsorbed at the oil-water   Journal of Colloid and Interface Science, 2021, 583: 214-221.
                 Interface: A theoretical comparison between spheres of uniform   [89]  JI X Y, ZHANG Q, QU X  Z,  et al. Poly(ionic liquid) Janus
                 wettability and "Janus" particles[J]. Langmuir, 2001, 17: 4708-4710.   nanosheets towards dye degradation[J].  RSC Advances, 2015, 5:
            [73]  FARAUDO J, FERNANDO B. Stability of  particles adsorbed at   21877-21880.
   35   36   37   38   39   40   41   42   43   44   45