Page 39 - 《精细化工》2023年第3期
P. 39
第 3 期 尹太恒,等: 两亲 Janus 纳米片的制备及胶体与界面性质研究进展 ·495·
[13] CHAO Y C, HUANG W H, CHENG K M, et al. Assembly and graphene oxide in simulated natural surface aquatic environments[J].
manipulation of Fe 3O 4/coumarin bifunctionalized submicrometer Environmental Pollution, 2015, 205: 161-169.
Janus particles[J]. ACS Applied Materials & Interfaces, 2014, 6: [38] WANG X J, LI X F, YANG S. Influence of pH and SDBS on the
4338-4345. stability and thermal conductivity of nanofluids[J]. Energy & Fuels,
[14] XU W W, WEI M L, SERPE M J. Janus microgels with tunable 2009, 23: 2684-2689.
functionality, polarity, and optical properties[J]. Advanced Optical [39] XUE Z, FOSTER E, WANG Y G, et al. Effect of grafted copolymer
Materials, 2017, 5: 1600614. composition on iron oxide nanoparticle stability and transport in porous
[15] ZHANG L M, YU J W, YANG M M, et al. Janus graphene from media at high salinity[J]. Energy & Fuels, 2014, 28: 3655-3665.
asymmetric two-dimensional chemistry[J]. Nature Communications, [40] BAGARIA H G, XUE Z, NEILSON B M, et al. Iron oxide
2013, 4: 1443-1449. nanoparticles grafted with sulfonated copolymers are stable in
[16] HONG L, JIANG S, GRANICK S. Simple method to produce Janus concentrated brine at elevated temperatures and weakly adsorb on
colloidal particles in large quantity[J]. Langmuir, 2006, 22: 9495-9499. silica[J]. ACS Applied Materials & Interfaces, 2013, 5: 3329-3339.
[17] PERRO A, MEUNIER F, SCHMITT V, et al. Production of large [41] EHTESABI H, AHADIAN M M, TAGHIKHANI V, et al. Enhanced
quantities of "Janus" nanoparticles using wax-in-water emulsions[J]. heavy oil recovery in sandstone cores using TiO 2 nanofluids[J].
Colloids and Surfaces A: Physicochemical and Engineering Aspects, Energy & Fuels, 2014, 28: 423-430.
2009, 332: 57-62. [42] DENG R H, LIANG F X, ZHOU P, et al. Janus nanodisc of diblock
[18] LIU B, ZHANG C L, LIU J G, et al. Janus non-spherical colloids by copolymers[J]. Advanced Materials, 2014, 26: 4469-4472.
asymmetric wet-etching[J]. Chemical Communications, 2009, 26: [43] PANG X C, WAN C S, WANG M Y, et al. Strictly biphasic soft and
3871-3873. hard Janus structures: Synthesis, properties, and applications[J].
[19] KIRILLOVA A, STOYCHEV G, IONOV L, et al. Platelet Janus Angewandte Chemie-International Edition, 2014, 53: 5524-5538.
particles with hairy polymer shells for multifunctional materials[J]. [44] LUO D, WANG F, ALAM M K, et al. Colloidal stability of
ACS Applied Materials & Interfaces, 2014, 6: 13106-13114. graphene-based amphiphilic Janus nanosheet fluid[J]. Chemistry of
[20] DE LEON A C, RODIER B J, LUO Q M, et al. Distinct chemical Materials, 2017, 29: 3454-3460.
and physical properties of Janus nanosheets[J]. ACS Nano, 2017, 11: [45] LI Q Q, CHEN B L, XING B S. Aggregation kinetics and
7485-7493. selfassembly mechanisms of graphene quantum dots in aqueous
[21] WU H, YI W Y, CHEN Z, et al. Janus graphene oxide nanosheets solutions: Cooperative effects of pH and electrolytes[J]. Environmental
prepared via pickering emulsion template[J]. Carbon, 2015, 93: Science & Technology, 2017, 51: 1364-1376.
473-483. [46] SU Y, YANG G Q, LU K, et al. Colloidal properties and stability of
[22] MCGRAIL B T, MANGADLAO J D, RODIER B J, et al. Selective aqueous suspensions of few-layer graphene: importance of graphene
mono-facial modification of graphene oxide nanosheets in suspension[J]. concentration[J]. Environmental Pollution, 2017, 220: 469-477.
Chemical Communications, 2016, 52: 288-291. [47] LUCKHAM P F, ROSSI S. The colloidal and rheological properties
[23] LIANG F X, SHEN K, QU X Z, et al. Inorganic Janus nanosheets of bentonite suspensions[J]. Advances in Colloid and Interface
[J]. Angewandte Chemie-International Edition, 2011, 50: 2379-2382. Science, 1999, 82: 43-92.
[24] LIANG F X, LIU J G, ZHANG C L, et al. Janus hollow spheres by [48] KIM I, TAGHAVY A, DICARLO D, et al. Aggregation of silica
emulsion interfacial self-assembled sol-gel process[J]. Chemical nanoparticles and its impact on particle mobility under high-salinity
Communications, 2011, 47: 1231-1233. conditions[J]. Journal of Petroleum Science and Engineering, 2015,
[25] JI X Y, ZHANG Q, LIANG F X, et al. Ionic liquid functionalized 133: 376-383.
[49] OWCZARZ M, MOTTA A C, MORBIDELLI M, et al. A colloidal
Janus nanosheets[J]. Chemical Communications, 2014, 50: 5706-5709.
description of intermolecular interactions driving fibril-fibril aggregation
[26] LIU Y J, LIANG F X, WANG Q, et al. Flexible responsive Janus
nanosheets[J]. Chemical Communications, 2015, 51: 3562-3565. of a model amphiphilic peptide[J]. Langmuir, 2015, 31: 7590-7600.
[27] XUE D, SONG X M, LIANG F X. Ultrathin Janus nanodiscs[J]. [50] PARK J S, KIHM K D, KIM H, et al. Wetting and evaporative
aggregation of nanofluid droplets on CVD-Synthesized hydrophobic
RSC Advances, 2017, 7: 25450-25454.
graphene surfaces[J]. Langmuir, 2014, 30: 8268-8275.
[28] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales
[J]. Science, 2002, 295(5564): 2418-2421. [51] LOTYA M, HERNANDEZ Y, KING P J, et al. Liquid phase
[29] WALTHER A, MÜLLER A H E. Janus particles[J]. Soft Matter, production of graphene by exfoliation of graphite in surfactant/water
2008, 4: 663-668. solutions[J]. Journal of the American Chemical Society, 2009, 131:
[30] ERHARDT R, BÖKER A, ZETTL H, et al. Janus micelles[J]. 3611-3620.
Macromolecules, 2001, 34, 4: 1069-1075. [52] ISRAELACHVILI J N. Intermolecular and surface forces: Revised
[M]. 3rd edtion. Waltham, MA: Academic Press, 2011.
[31] LIU Y F, ABETZ V, MÜLLER A H E. Janus cylinders[J].
[53] YOTSUMOTO H, YOON R H. Application of extended DLVO
Macromolecules, 2003, 36: 7894-7898.
theory: I. Stability of rutile suspensions[J]. Journal of Colloid and
[32] WALTHER A, ANDRÉ X, DRECHSLER M, et al. Janus discs[J]. Interface Science, 1993, 157: 426-433.
Journal of the American Chemical Society, 2007, 129: 6187-6198. [54] CHANG Y I, CHANG P K. The role of hydration force on the
[33] WALTHER A, DRECHSLER M, MÜLLER A H E. Structures of
stability of the suspension of saccharomyces cerevisiae-application of
amphiphilic Janus discs in aqueous media[J]. Soft Matter, 2009, 5:
the extended DLVO theory[J]. Colloids and Surfaces A: Physicochemical
385-390.
and Engineering Aspects, 2002, 211: 67-77.
[34] ZHAO Z G, LIANG F X, ZHANG G L, et al. Dually responsive [55] WU W, GIESE R F, VAN OSS C J. Stability versus flocculation of
Janus composite nanosheets[J]. Macromolecules, 2015, 48: 3598-3603. particle suspensions in water-correlation with the extended DLVO
[35] KHOEE S, KARIMI M R. Dual-drug loaded Janus graphene approach for aqueous systems, compared with classical DLVO theory
oxide-based thermoresponsive nanoparticles for targeted therapy[J]. [J]. Colloids and Surfaces B: Biointerfaces, 1999, 14: 47-55.
Polymer, 2018, 142: 80-98. [56] KALDASCH J, SENGE B, LAVEN J. The impact of non-DLVO
[36] GAMBINOSSI F, MYLON S E, FERRI J K. Aggregation kinetics forces on the onset of shear thickening of concentrated electrically
and colloidal stability of functionalized nanoparticles[J]. Advances in stabilized suspensions[J]. Rheologica Acta, 2009, 48: 665-672.
Colloid and Interface Science, 2015, 222: 332-349. [57] BRANT J A, CHILDRESS A E. Membrane-colloid interactions:
[37] HUA Z L, TANG Z Q, BAI X, et al. Aggregation and resuspension of Comparison of extended DLVO predictions with AFM force