Page 39 - 《精细化工》2023年第3期
P. 39

第 3 期                 尹太恒,等:  两亲 Janus 纳米片的制备及胶体与界面性质研究进展                                ·495·


            [13]  CHAO Y C,  HUANG W H, CHENG K M, et al. Assembly and   graphene oxide in simulated natural surface aquatic  environments[J].
                 manipulation of Fe 3O 4/coumarin bifunctionalized submicrometer   Environmental Pollution, 2015, 205: 161-169.
                 Janus particles[J]. ACS Applied Materials & Interfaces, 2014, 6:   [38]  WANG X J, LI X F, YANG S. Influence of pH and SDBS on the
                 4338-4345.                                        stability and thermal conductivity of nanofluids[J]. Energy & Fuels,
            [14]  XU W W, WEI M L, SERPE M J. Janus microgels with tunable   2009, 23: 2684-2689.
                 functionality, polarity, and optical properties[J]. Advanced Optical   [39]  XUE Z, FOSTER E, WANG Y G, et al. Effect of grafted copolymer
                 Materials, 2017, 5: 1600614.                      composition on iron oxide nanoparticle stability and transport in porous
            [15]  ZHANG  L M, YU J  W, YANG  M M, et al. Janus graphene from   media at high salinity[J]. Energy & Fuels, 2014, 28: 3655-3665.
                 asymmetric two-dimensional chemistry[J]. Nature Communications,   [40]  BAGARIA H G,  XUE Z, NEILSON B M,  et al. Iron oxide
                 2013, 4: 1443-1449.                               nanoparticles grafted with sulfonated copolymers are stable in
            [16]  HONG L, JIANG S, GRANICK S. Simple method to produce Janus   concentrated brine at elevated temperatures and weakly adsorb on
                 colloidal particles in large quantity[J]. Langmuir, 2006, 22: 9495-9499.   silica[J]. ACS Applied Materials & Interfaces, 2013, 5: 3329-3339.
            [17]  PERRO  A, MEUNIER F, SCHMITT  V,  et al. Production of large   [41]  EHTESABI H, AHADIAN M M, TAGHIKHANI V, et al. Enhanced
                 quantities of "Janus" nanoparticles using wax-in-water emulsions[J].   heavy oil recovery in sandstone cores using TiO 2 nanofluids[J].
                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   Energy & Fuels, 2014, 28: 423-430.
                 2009, 332: 57-62.                             [42]  DENG R H, LIANG F X, ZHOU P, et al. Janus nanodisc of diblock
            [18]  LIU B, ZHANG C L, LIU J G, et al. Janus non-spherical colloids by   copolymers[J]. Advanced Materials, 2014, 26: 4469-4472.
                 asymmetric wet-etching[J]. Chemical  Communications, 2009, 26:   [43]  PANG X C, WAN C S, WANG M Y, et al. Strictly biphasic soft and
                 3871-3873.                                        hard Janus  structures: Synthesis,  properties, and applications[J].
            [19]  KIRILLOVA A, STOYCHEV G, IONOV L,  et al. Platelet Janus   Angewandte Chemie-International Edition, 2014, 53: 5524-5538.
                 particles with hairy polymer shells for  multifunctional materials[J].   [44]  LUO D, WANG F,  ALAM  M  K,  et al. Colloidal stability of
                 ACS Applied Materials & Interfaces, 2014, 6: 13106-13114.   graphene-based amphiphilic Janus nanosheet fluid[J]. Chemistry of
            [20]  DE LEON A C, RODIER B J, LUO Q M, et al. Distinct chemical   Materials, 2017, 29: 3454-3460.
                 and physical properties of Janus nanosheets[J]. ACS Nano, 2017, 11:   [45]  LI Q Q,  CHEN  B L,  XING B S. Aggregation kinetics and
                 7485-7493.                                        selfassembly  mechanisms of graphene quantum dots in aqueous
            [21]  WU H, YI W Y, CHEN Z, et al. Janus graphene oxide nanosheets   solutions: Cooperative effects of pH and electrolytes[J]. Environmental
                 prepared  via pickering emulsion template[J]. Carbon, 2015, 93:   Science & Technology, 2017, 51: 1364-1376.
                 473-483.                                      [46]  SU Y, YANG G Q, LU K, et al. Colloidal properties and stability of
            [22]  MCGRAIL B T, MANGADLAO J D, RODIER B J, et al. Selective   aqueous suspensions of few-layer graphene: importance of graphene
                 mono-facial modification of graphene oxide nanosheets in suspension[J].   concentration[J]. Environmental Pollution, 2017, 220: 469-477.
                 Chemical Communications, 2016, 52: 288-291.   [47]  LUCKHAM P F, ROSSI S. The colloidal and rheological properties
            [23]  LIANG F X, SHEN K, QU X Z, et al. Inorganic Janus nanosheets   of bentonite suspensions[J]. Advances in Colloid and Interface
                 [J]. Angewandte Chemie-International Edition, 2011, 50: 2379-2382.   Science, 1999, 82: 43-92.
            [24]  LIANG F X, LIU J G, ZHANG C L, et al. Janus hollow spheres by   [48]  KIM I,  TAGHAVY A, DICARLO D,  et al.  Aggregation of silica
                 emulsion interfacial self-assembled sol-gel process[J].  Chemical   nanoparticles and its impact on particle mobility under high-salinity
                 Communications, 2011, 47: 1231-1233.              conditions[J]. Journal of Petroleum Science and Engineering, 2015,
            [25]  JI X Y, ZHANG Q, LIANG F X, et al. Ionic liquid functionalized   133: 376-383.
                                                               [49]  OWCZARZ M, MOTTA A C, MORBIDELLI M, et al. A colloidal
                 Janus nanosheets[J]. Chemical Communications, 2014, 50: 5706-5709.
                                                                   description of intermolecular interactions driving fibril-fibril aggregation
            [26]  LIU Y J, LIANG  F X, WANG Q,  et al. Flexible responsive Janus
                 nanosheets[J]. Chemical Communications, 2015, 51: 3562-3565.   of a model amphiphilic peptide[J]. Langmuir, 2015, 31: 7590-7600.
            [27]  XUE D, SONG X M, LIANG F X.  Ultrathin Janus nanodiscs[J].   [50]  PARK J S, KIHM K D, KIM  H,  et al. Wetting and evaporative
                                                                   aggregation of nanofluid droplets on CVD-Synthesized hydrophobic
                 RSC Advances, 2017, 7: 25450-25454.
                                                                   graphene surfaces[J]. Langmuir, 2014, 30: 8268-8275.
            [28]  WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales
                 [J]. Science, 2002, 295(5564): 2418-2421.     [51]  LOTYA M,  HERNANDEZ  Y,  KING P J,  et al. Liquid  phase
            [29]  WALTHER A, MÜLLER A H E.  Janus  particles[J].  Soft  Matter,   production of graphene by exfoliation of graphite in surfactant/water
                 2008, 4: 663-668.                                 solutions[J]. Journal of the American Chemical Society, 2009, 131:
            [30]  ERHARDT R, BÖKER  A, ZETTL H,  et al. Janus  micelles[J].   3611-3620.
                 Macromolecules, 2001, 34, 4: 1069-1075.       [52]  ISRAELACHVILI  J N. Intermolecular and surface forces: Revised
                                                                   [M]. 3rd edtion. Waltham, MA: Academic Press, 2011.
            [31]  LIU Y F,  ABETZ V, MÜLLER  A H E. Janus cylinders[J].
                                                               [53]  YOTSUMOTO H, YOON R H. Application of extended DLVO
                 Macromolecules, 2003, 36: 7894-7898.
                                                                   theory: I.  Stability  of rutile suspensions[J]. Journal  of Colloid and
            [32]  WALTHER A, ANDRÉ X, DRECHSLER M,  et al. Janus discs[J].   Interface Science, 1993, 157: 426-433.
                 Journal of the American Chemical Society, 2007, 129: 6187-6198.   [54]  CHANG Y I,  CHANG P K.  The role of hydration force on the
            [33]  WALTHER A, DRECHSLER M, MÜLLER A  H E. Structures of
                                                                   stability of the suspension of saccharomyces cerevisiae-application of
                 amphiphilic Janus discs in aqueous media[J]. Soft Matter, 2009, 5:
                                                                   the extended DLVO theory[J]. Colloids and Surfaces A: Physicochemical
                 385-390.
                                                                   and Engineering Aspects, 2002, 211: 67-77.
            [34]  ZHAO  Z G, LIANG F X, ZHANG  G L, et  al. Dually responsive   [55]  WU W, GIESE R F, VAN OSS C J. Stability versus flocculation of
                 Janus composite nanosheets[J]. Macromolecules, 2015, 48: 3598-3603.   particle suspensions in water-correlation with the extended DLVO
            [35]  KHOEE S, KARIMI M R.  Dual-drug loaded Janus graphene   approach for aqueous systems, compared with classical DLVO theory
                 oxide-based thermoresponsive nanoparticles for targeted therapy[J].   [J]. Colloids and Surfaces B: Biointerfaces, 1999, 14: 47-55.
                 Polymer, 2018, 142: 80-98.                    [56]  KALDASCH J, SENGE B,  LAVEN J. The impact of non-DLVO
            [36]  GAMBINOSSI F,  MYLON S  E, FERRI J K. Aggregation kinetics   forces on the onset of shear thickening of concentrated electrically
                 and colloidal stability of functionalized nanoparticles[J]. Advances in   stabilized suspensions[J]. Rheologica Acta, 2009, 48: 665-672.
                 Colloid and Interface Science, 2015, 222: 332-349.   [57]  BRANT J A,  CHILDRESS A  E. Membrane-colloid interactions:
            [37]  HUA Z L, TANG Z Q, BAI X, et al. Aggregation and resuspension of   Comparison of extended DLVO predictions with AFM force
   34   35   36   37   38   39   40   41   42   43   44