Page 151 - 《精细化工》2023年第4期
P. 151

す 4 ᱌                   䭵ᓛᓛ喑ぶ: 䊲ϟⅡ๖♣็䚇ᩦᕔ㛉⮱ݣิࣷڣ⇦Ⅱܳ⻨ᕔ㘪                                     g837g


            [11]  ZHENG  Z  R,  GU  Z  Y,  HUO  R  T,  et al.  Superhydrophobicity  of   [22]  XIN Y (䓈⣒),  SONG  S  (Ⴘ❪),  ZHANG  Z  L  (ᑍ㟊㪫), et al.
                 polyvinylidene  fluoride  membrane  fabricated  by  chemical  vapor   Preparation of scale-like  BiVO 4  coated mesh and its  application in
                 deposition  from  solution[J].  Applied  Surface  Science,  2009,  255:   oil-water separation[J]. Chemical Industry and Engineering Progress
                 7263-7267.                                        (ࡃጒ䔈ᆂ), 2021, 40(6): 3536-3542.
            [12]  YANG J, WANG L L, XIE A, et al. Facile surface coating of metal   [23]  JU  J  P,  WANG  T  M,  WANG  Q  H.  et al.  Superhydrophilic  and
                 tannin  complex  onto  PVDF  membrane  with  underwater   underwater  superoleophobic  PVDF  membranes  via  plasma-induced
                 superoleophobicity for oil water emulsion separation[J]. Surface and   surface PEGDA for effective separation of oil-in-water emulsions[J].
                 Coatings Technology, 2020, 389: 125630.           Colloids and Surfaces A: Physicochemical and Engineering Aspects,
            [13]  ZHANG  G  F,  LI  Y  Z,  GAO  A,  et al.  Bio-inspired  underwater   2015, 481: 151-157.
                 superoleophobic PVDF membranes for highly-efficient simultaneous   [24]  XU L H, HE Y, FENG X, et al. A comprehensive description of the
                 removal  of  insoluble  emulsion  oil-in-waters  and  soluble  anionic   threshold  flux  during  oil/water  emulsion  filtration  to  identify
                 dyes[J]. Chemical Engineering Journal, 2019, 369: 576-587.   sustainable  flux  regimes  for  tannic  acid  (TA)  dip-coated  poly
            [14]  LILIANA P, PRADEEP N, KLAUS P, et al. Tannin-based thin-film   (vinylidene  fluoride)  (PVDF)  membranes[J].  Journal  of  Membrane
                 composite  membranes  for  solvent  nanofiltration[J].  Journal  of   Science, 2018, 563: 43-53.
                 Membrane Science, 2017, 541: 137-142.         [25]  SHI  P,  HU  X  K,  WANG  Y  T,  et al.  A  PEG-tannic  acid  decorated
            [15]  WANG  Z  X,  YANG  H  C,  HE  F,  et al.  Mussel-inspired  surface   microfiltration membrane for the fast removal of Rhodamine B from
                 engineering  for  water-remediation  materials[J].  Matter,  2019,  1:   water[J]. Separation and Purification Technology, 2018, 207: 443-450.
                 115-155.                                      [26]  WANG  B,  LIANG  W  X,  GUO  Z  U,  et al.  Biomimetic  super-
            [16]  MICAH B, JI Y L, HUANG S H, et al. A facile and versatile strategy   lyophobic  and  super-lyophilic  materials  applied  for  oil/water
                 for fabricating thin-film nanocomposite membranes with polydopamine-   separation:  A  new  strategy  beyond  nature[J].  Chemical  Society
                 piperazine  nanoparticles  generated  in situ[J].  Journal  of Membrane   Reviews, 2015, 44: 336-361.
                 Science, 2019, 579: 79-89.                    [27]  SUN  Y  L,  ZONG  Y,  YANG  N,  et al.  Surface  hydrophilic
            [17]  YAN W T, SHI M Q, DONG C X, et al. Applications of tannic acid   modification of PVDF membranes based on tannin and zwitterionic
                 in  membrane  technologies:  A  review[J].  Advance  in  Colloid  and   substance  towards  effective  oil-in-water  emulsion  separation[J].
                 Interface Science, 2020, 284: 102267.             Separation and Purification Technology, 2020, 234: 116015.
            [18]  WU L L, LIN Q H, LIU C, et al. A stable anti-fouling coating on   [28]  WANG  X  Y,  LI  M,  SHEN  Y  Q,  et al.  Facile  preparation  of  loss-
                 PVDF  membrane  constructed  of  polyphenol  tannic  acid,   coated  membranes  for  multifunctional  surfactant-stabilized  oil-in-
                 polyethyleneimine and metal ion[J]. Polymers, 2019, 11: 1975.   water emulsion separation[J]. Green Chemistry, 2019, 21: 3190.
            [19]  XU  L  Q,  NEOH  K,  KANG  E  T,  et al.  Natural  polyphenols  as   [29]  WU  J  D,  HOU  Z  Q,  YU  Z  X,  et al.  Facile  preparation  of
                 versatile  platforms  for  material  engineering  and  surface   metal-polyphenol coordination complex coated PVDF membrane for
                 functionalization[J]. Progress in Polymer Science, 2018, 87: 165-196.   oil/water  emulsion  separation[J].  Separation  and  Purification
            [20]  XIE  A,  CUI  J  Y,  YANG  J,  et al.  Photo-Fenton  self-cleaning   Technology, 2021, 258(2): 118022.
                 membranes  with  robust  flux  recovery  for  an  efficient  oil/water   [30]  MIAO W Z, JIAO D C, WANG C Y, et al. Ethanol-induced one-step
                 emulsion separation[J]. Journal of Materials Chemistry, A. Materials   fabrication  of  superhydrophobic-superoleophilic  poly(vinylidene
                 for Energy and Sustainability, 2019, 7(14): 8491-8502.   fluoride)  membrane  for  efficient  oil/water  emulsions  separation[J].
            [21]  ZHOU Y Y, ZHANG J, WANG Z X, et al. A modified TA-APTES   Journal of Water Process Engineering, 2020, 34: 101121.
                 coating:  Endowing  porous  membranes  with  uniform,  durable   [31]  TANG F,  WANG  D Y,  ZHOU C L,  et al.  Natural  polyphenol
                 superhydrophilicity and outstanding anti-crude oil-adhesion property   chemistry  inspired  organic-inorganic  composite  coating  decorated
                 via  one-step  process[J].  Journal  of  Membrane  Science,  2021,  618:   PVDF membrane for oil-in-water emulsions separation[J]. Materials
                 118703.                                           Research Bulletin, 2020, 32: 110995.






            喍̷ᣒす 782 䶢喎                                            Electronic Materials, 2022, 51(8): 4493-4508.
                                                               [77]  LIU Y Y, LIU Y H, GU L Y, et al. Modulating the biofunctionality of
            [75]  HU H T, LI P K,  WANG Z  C, et al. Glutamate oxidase-integrated   enzyme-MOF  nanobiocatalyst  through  structure-switching  aptamer
                 biomimetic metal-organic framework hybrids as cascade nanozymes   for  continuous  degradation  of  BPA[J].  Colloids  and  Surfaces  B:
                 for ultrasensitive glutamate detection[J]. Journal of Agricultural and   Biointerfaces, 2021, 208: 112099.
                 Food Chemistry, 2022, 70(12): 3785-3794.      [78]  ZHOU G Z, LI M. Near-infrared-Ĕ  plasmonic trienzyme-integrated
                                                                   metal-organic frameworks with high-efficiency enzyme cascades for
            [76]  CHEN Y T, WANG F, ZHANG M, et al. The catalytic effect on H 2O 2
                 electro-reduction  of  an  electrode  based  on  MOF  material  ZIF-8  as   synergistic  trimodal  oncotherapy[J].  Advanced  Materials,  2022,
                 hemoglobin  supporter  via  hydrogen  bond  interaction[J].  Journal  of   34(24): 2200871.





            喍̷ᣒす 828 䶢喎                                            polyethersulfone  blend  membranes  with  improved  fouling-resistant
                                                                   ability  and  ultrafiltration  performance[J].  Journal  of  Membrane
            [43]  FARAHANI M H D A, VATANPOUR V. A comprehensive study on   Science, 2006, 283(1): 440-447.
                 the  performance  and  antifouling  enhancement  of  the  PVDF  mixed   [45]  VATANPOUR  V,  MADAENI  S  S,  MORADIAN  R,  et al.
                 matrix  membranes  by  embedding  different  nanoparticulates:  Clay,   Fabrication  and  characterization  of  novel  antifouling  nanofiltration
                 functionalized  carbon  nanotube,  SiO 2  and  TiO 2[J].  Separation  and   membrane  prepared  from  oxidized  multiwalled  carbon  nanotube/
                 Purification Technology, 2018, 197(31): 372-381.   polyethersulfone  nanocomposite[J].  Journal  of  Membrane  Science,
            [44]  WANG  Y  Q,  SU  Y  L,  MA  X  L,  et al.  Pluronic  polymers  and   2011, 375(1): 284-294.
   146   147   148   149   150   151   152   153   154   155   156