Page 75 - 《精细化工》2023年第4期
P. 75
す 4 ܜᑧ喑ぶ: ბڲᓛ䛼㠜ㆨ VOCs ٶ⅔ࡃ䭺㼐יࡃݯ⮱ⵁ⾣䔈ᆂ g761g
䬡⮱䩛Ⱕο҉⩕ᄩ㜡γ⩹䲏⩢㢤ܳጰ̺Ꭰ㶎喑ߍᔘ Ꮑ⩕͚⮱ᗲۢᎣ̺⌲ẇ喠
γ⩢㢤ϻ䙺Ҁݝ Zr ࣌ၽ喑Вࣷ䕇䓴 Zr—P 䩛ݝ BP 喍3喎็יࡃݯ⮱⽠Ⴧᕔহᓗ⣜Ҭ⩕ᕔ㘪⁍Ҡ喠
㶕䲏⮱䒙⼨喑ϻ㔹ើݣγ⩢ၽ-⾧⾡ᄦ⮱ฺव喑ᑧ 喍4喎ౕݖ⩕㏠ㆠٶיࡃݯ䭺㼐Ⱋᴴᴀ➖⮱䓴
γ יࡃݯౕ ज㻮ٶ̸ ᄦ⩟㠜⮱ 䭺㼐᩵⢴ ȡ ⼸͚喑ज㘪чϔ⩌̭ψ≨ᕔ͚䬡Ҁᝃ⮱➖喑Ⴐ
BP@UiO-66 ⮱वͧᑧ⩢㢤䒙⼨ӈγ⮱ Й⮱ᄬপࣷ࢞რᕔ䰭䔈̭ₒᣏ⾣喠
∂喑ᆂγ BP@MOFs ᱽ᫆⮱ज㵹ᕔ喑ͧ㠜ㆨ VOCs 喍5喎ฺᱯ⮱ݣิ≮⼸䭽ݣγٶיࡃݯౕጒ̷͇
⮱䭺㼐ӈγ⤳䃧ധȡ ⮱๔㻱Ꮑ⩕ȡ
⩞λᄦ PCO ឭᱜ⮱γ㼐ᰶ䭽喑䦵ᄦВ̷䬛䷅
ܧ̭ψᐧ䃛喟㐔㐚⌞ڒⵁ⾣ऱٶיࡃᱽ᫆⮱ᆋᕔ喑
Ꭳᵦᢛ⤳䃧ⵁ⾣Გ䃫䃎ٶיࡃҀ㈨喑जВ䶱≸ܧڣ
ౕ᱗Გⵁ⾣͚⮱ᕔ㘪喑हᬣڠ∕Ⱕיࡃݯ⮱ࣾᆂ喑
ᓄݝФᵩѻ喑व∂キࢂ⮱ٶיࡃݯ喠㐩वݖ
⩕ጒ͇≨ߕϔ⩌⮱Ꮜᐰ➖व倅᩵⮱יࡃᱽ᫆喑䕇
䓴ĄВᏌ⇨Ꮜą⮱⤳ᔢ䖬ٺᏌᐰ㔹ᄩ㜡࢞რ⣜ධ
⮱䬛䷅Ȳຯݖ⩕क़䨙−व MIL-101(Cr)ȳȡ㐀व
ڣЃឭᱜᲒࡼह䓫ݝ䶱᩵喍ຯٶ☚יࡃহٶ⩢
יࡃ喎喠ౕיࡃݯיࡃᕔ㘪⮱䃱Ф䲏喑ᐧ⿸䃱Фᴴ
ఫ 8 BP@UiO-66 ٶ䭺㼐⩟㠜⮱ज䛺⩕ᕔ [76] ۳喑䖢ᓗ䃱Фᴴ۳喑䔈㔹Ӱ䔈倅ᕔ㘪יࡃݯ⮱ᐭࣾȡ
Fig. 8 Reusability of BP@UiO-66 for photodegradation of ᱗Გ PCO ឭᱜ⮱ⵁ⾣Ꮑ䯳ౕ͚ಸٶיࡃݯ⮱ᐭ
toluene [76]
ࣾȠᏌᐰ䉱⎽倅թࡃݖ⩕হ㐀वڣЃឭᱜぶᲒ䔈̭
4.2.3 ➧➟ٶ⩌⩢ၽ ₒ䲍䓾䭲Ꮑ⩕ȡ
ᔘ䕌䔋㐚⊵㕄ٶ⩌⩢ၽजᰶ᩵Ӱ䔈⩢ၽ-⾧⾡ ࣯㔰᪴⡛喟
ᄦ⮱ܳ⻨喑倅ٶיࡃ᩵⢴ȡCAO ぶ [77] 䕇䓴Ⅱ☚∂
[1] GUO D W, FENG D D, ZHANG Y L, et al. Synergistic mechanism
ݣิܧ Bi 2 WO 6–x /䲋ᮣᔮ BiOCl喍p-BWO喎㏠ㆠ❴ȡ
of biochar-nano TiO 2 adsorption-photocatalytic oxidation of toluene
p-BWO ㏠ㆠ❴㷘ज㻮ٶ⚔ᄱϔ⩌⩢ၽ-⾧⾡ᄦ喑ٶ [J]. Fuel Processing Technology, 2022, 229(1): 107200-107213.
⩌⩢ၽ㷘[W(Ę)O 6–x ]ᢂ㣤喑ᄳ W(Ę)䔅࣌ͧ W(ė)喑 [2] HO V T T, CHAU D H, BUI K Q, et al. A high-performing
nanostructured Ir doped-TiO 2 for efficient photocatalytic degradation
Ҭ㏠ㆠ❴अ㨊喑㔹 O 2 ᄳ W(ė)⅔ࡃͧ W(Ę)喍⮪ of gaseous toluene[J]. Inorganics, 2022, 10(3): 29-45.
ᔮ喎喑䕇䓴Ⴙअ㞟ᓗ⣜ज̺⊵㕄ٶ⩌⩢ၽ喑㔹⾧ [3] QIU S X, WANG W J, YU J Q, et al. Enhanced photocatalytic
3
⾡Ӱ䔈γ⩟㠜 C(sp )ÿH 䩛⮱≨ࡃ喑Ҭ p-BWO ㏠ㆠ degradation efficiency of formaldehyde by in-situ fabricated TiO 2/C/
CaCO 3 heterojunction photocatalyst from mussel shell extract[J].
❴ౕ䭺㼐⩟㠜ᬣڤᰶ㞜ສ⮱ᕔ㘪ȡ̻ Bi 2 WO 6 Ⱕ℁喑 Journal of Solid State Chemistry, 2022, 311(2022): 123110-123120.
p-BWO ᄦ⩟㠜⮱䭺㼐᩵⢴᭫㦄倅喑ڣ䒙ࡃ⢴倅 [4] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for
volatile organic compounds (VOCs) and the key factors for VOCs
γ 166 Ժ喑ڣ͚͝ჹ⮱ᮣᔮ-䲋ᮣᔮ䓦⩹㑖ⴚγ⾧⾡
adsorption process: A review[J]. Separation and Purification Technology,
⮱䓮⼨䌜ᒱ喑͝ჹ⮱[W(Ę)O 6–x]ࢂٰ㘪ᢂ㣤⩢ၽ㔹ᑧ 2020, 235(26): 116213-116273.
ݣܳ⻨䒪≮ၽȡ [5] ALIVAND M S, TEHRANI N H M H, ASKARIEH M, et al. Defect
engineering-induced porosity in graphene quantum dots embedded
metal-organic frameworks for enhanced benzene and toluene adsorption
5 㐀䄚̻ᆂ᱈ [J]. Journal of Hazardous Materials, 2021, 416(47): 125973-125985.
[6] BAYTAR O, ùAHIN Ö, HOROZ S, et al. High-performance gas-
๗䭠㘪᭜㜗♣⩹⮱जں⩌䉱⎽喑ᄳڣٲܳݖ⩕ phase adsorption of benzene and toluene on activated carbon:
Გᰶ᩵ࣨ䮑㠜ㆨ VOCs喑чͧϧㆨчፓᲒ̭Ⴧ⮱ Response surface optimization, reusability, equilibrium, kinetic, and
competitive adsorption studies[J]. Environmental Science and Pollution
㏼≻᩵⯷ȡ᱙᪴䬽䔝γٶיࡃ䭺㼐⮱҉⩕ᱧ⤳喑᪡ Research, 2020, 27(4): 26191-26210.
⤳ܧڲȠใ䘕㉍ᄦ䭺㼐᩵⢴⮱ᒞ৺喑ᎣᠴܧजВ [7] ZHAO H, YANG C Y, LV K L, et al. Single atomic Au induced
dramatic promotion of the photocatalytic activity of TiO 2 hollow
䕇䓴ᣧᱯȠ䉢䛾ᆋ↶⼜ȠࡷᄩҀฺवȠ➧➟ٶ⩌⩢
microspheres[J]. Chemical Communications, 2020, 56(11): 1745-1748.
ၽ⮱ᩦᕔឭᱜᲒᰶ᩵倅יࡃݯ⮱ٶ႓ᕔ㘪喑ѳ㏠ [8] WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic
ㆠٶיࡃݯϺႅౕВ̸ 5 ͗䬛䷅喟 and photo/thermocatalytic oxidation for VOCs purification over
manganese-based oxide catalysts[J]. Environmental Science &
喍1喎䘕ܳٶיࡃݯ࣌᫆᱙倅Ƞ⊵㕄๔́ႅౕ Technology, 2021, 55(8): 4268-4286.
⣜ධᴀ䬛䷅喠 [9] VIKRANT K, WEON S, KIM K H, et al. Platinized titanium dioxide
喍2喎㷘ᐭࣾ⮱ٶיࡃݯϲౕ侹ⵁ⾣͚➦Ⴧ⮱ (Pt/TiO 2) as a multi-functional catalyst for thermocatalysis, photocatalysis,
and photothermal catalysis for removing air pollutants[J]. Applied
У̸㶕⣝ܧ㞜ສ⮱יࡃ≨ᕔহ⽠Ⴧᕔ喑ѳౕ䭲 Materials Today, 2021, 23(7): 100993-101032.