Page 76 - 《精细化工》2023年第4期
P. 76

g762g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

            [10]  VIRANT K, KIM K H, DONG F, et al. Deep oxidation of gaseous   photocatalysis: Advantages and challenges[J]. Advanced  Materials,
                 formaldehyde at room-temperature by a durable catalyst formed   2019, 31: 1801369-1801392.
                 through the controlled addition of potassium to platinum supported   [28]  PARVARI R, GHORBANI F, BAHRAMI A, et al. A novel core-shell
                 on waste eggshell[J]. Chemical Engineering Journal, 2022, 428(27):   structured  Į-Fe 2O 3/Cu/g-C 3N 4 nanocomposite for continuous
                 131177-131193.                                    photocatalytic removal of air ethylbenzene under  visible light
            [11]  ZHENG Y F, LIU Q L, CANG P S, et al. Defective ultrafine MnO x   irradiation[J]. Journal of  Photochemistry and Photobiology A:
                 nanoparticles confined within a carbon matrix for low-temperature   Chemistry, 2020, 399(34): 112643-112653.
                 oxidation of volatile organic compounds[J]. Environmental Science   [29]  KUSIAK-NEJMAN E, WOJNAROWICZ J, MORAWSKI A, et al.
                 & Technology, 2021, 55(8): 5403-5411.             Size-dependent effects of ZnO nanoparticles on the photocatalytic
            [12]  BATHLA A, YOUNIS S A, PAL  B,  et al. Recent progress in   degradation of phenol in a water  solution[J]. Applied Surface
                 bimetallic nanostructure impregnated  metal-organic framework for   Science, 2021, 541(37): 148416-148430.
                 photodegradation of organic pollutants[J]. Applied Materials Today,   [30]  LI D Q, SONG H C, MENG M, et al. Effects of particle size on the
                 2021, 24(7): 101105-101123.                       structure and photocatalytic performance by  alkali-treated  TiO 2[J].
            [13]  XU Z M, WEI C, CAO J Z, et al. Controlling the gas-water interface   Nanomaterials, 2020, 10(3): 546-560.
                 to enhance photocatalytic degradation of volatile organic compounds   [31]  PANTHI G, PARK M. Approaches for enhancing the photocatalytic
                 [J]. ACS ES&T Engineering, 2021, 1(7): 1140-1148.   activities of barium titanate: A review[J]. Journal of Energy Chemistry,
            [14]  TAHIR M, TASLEEM S, TAHIR B.  Recent development in band   2022, 73(31): 160-188.
                 engineering  of binary semiconductor materials for  solar driven   [32]  JAAFAR N, NAJMAN A, MARFUR A,  et al. Strategies for the
                 photocatalytic hydrogen production[J]. International Journal of   formation of oxygen vacancies in zinc oxide nanoparticles used for
                 Hydrogen Energy, 2020, 45(32): 15985-16038.       photocatalytic degradation of phenol  under visible light  irradiation
            [15]   CHENG R, XIA  J C, WEN J  Y,  et al. Nano metal-containing   [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020,
                 photocatalysts for the removal of volatile organic compounds: Doping,   388: 112202-112212.
                 performance, and mechanisms[J]. Nanomaterials, 2022, 12(8): 1335-1361.   [33]  WEERATHUNGA H, TANG  C, BROCK A,  et al. Nanostructure
            [16]  ZHAO W C, ADEEL M,  ZHANG P,  et al. A critical review on   shape-effects in ZnO heterogeneous  photocatalysis[J]. Journal of
                 surface modified nano-catalysts application for photocatalytic degradation   Colloid and Interface Science, 2022, 606(57): 588-599.
                 of volatile organic compounds[J]. Environmental Science: Nano,   [34]  GUO D W, FENG D D, ZHANG Y, et al. Carbon material-TiO 2 for
                 2022, 9(1): 61-80.                                photocatalytic reduction of CO 2 and degradation of VOCs: A critical
            [17]  DING D N,  ZHOU Y, HE  T  H,  et al. Facet selectively  exposed   review[J]. Fuel Processing Technology, 2022, 231(1): 107261-107281.
                 Į-MnO 2 for complete photocatalytic oxidation of carcinogenic HCHO   [35]  ZHU Z H, XUAN Y M, LIU X L, et al. What role does the incident
                 at ambient temperature[J]. Chemical Engineering Journal, 2022,   light intensity play in photocatalytic conversion of CO 2: Attenuation
                 431(4): 133737-133750.                            or intensification?[J]. ChemPhysChem, 2022, 23(14): 851-859.
            [18]  WANG M J, ZHANG F, ZHU X  D,  et al. DRIFTS evidence for   [36]  DENG Y. Developing a langmuir-type excitation equilibrium equation
                 facet-dependent adsorption of gaseous toluene on TiO 2 with relative   to describe the effect of light intensity on the kinetics of the
                 photocatalytic properties[J]. Langmuir, 2015, 31(5): 1730-1736.   photocatalytic oxidation[J]. Chemical Engineering Journal, 2018,
            [19]  LI J W, HE M Z, YAN J K,  et al. Room temperature engineering   337(23): 220-227.
                 crystal facet of Cu 2O for photocatalytic degradation of methyl   [37]  PILL D, WIESEN P, KLEFFMANN J. Temperature dependencies of
                 orange[J]. Nanomaterials, 2022, 12(10): 1697-1715.   the degradation of NO, NO 2 and HONO on a photocatalytic dispersion
            [20]  CAO Y, HUANG L, BAI Y, et al. Synergic effect of oxygen vacancy   paint[J]. Physical Chemistry Chemical Physics, 2021, 23(15): 9418-9427.
                 defect and shape on the photocatalytic performance of nanostructured   [38]  ZHU J, WANG L,  HU Q X,  et al. Hydrophobic zeolite containing
                 TiO 2 coating[J]. Polyhedron, 2020, 175(39): 114214-114220.   titania particles as wettability-selective catalyst for formaldehyde
            [21]  NIE J K, YU X J, LIU  Z  B,  et al. Energy band reconstruction   removal[J]. ACS Catalysis, 2018, 8(10): 5250-5254.
                 mechanism of Cl-doped Cu 2O and photocatalytic degradation   [39]  ZHANG J J, VIKRANT K, JIN J X, et al. Unveiling the collective
                 pathway for levofloxacin[J]. Journal  of Cleaner Production, 2022,   effects of moisture and oxygen on the photocatalytic degradation of
                 363(30): 132593-132605.                           m-xylene using a titanium dioxide supported platinum catalyst[J].
            [22]  LONG X X, FENG C P, YANG S Q, et al. Oxygen doped graphitic   Chemical Engineering Journal, 2022, 439(27): 135747-135760.
                 carbon  nitride with regulatable local electron density  and band   [40]  HU Y C, SUN Y J, WANG X W. Effect of gas flow rate on transport
                 structure for improved photocatalytic degradation of Bisphenol A[J].   properties of Sr 2FeMoO 6[J]. Journal of Magnetism and Magnetic
                 Chemical Engineering Journal, 2022, 435(27): 134835-134846.   Materials, 2022, 553(48): 169234-169247.
            [23]  SHANDILYA P, SAMBYAL S, SHARMA R, et al. Properties, optimized   [41]  BELLE U, UNVEMIZZI M, POLVARA E, et al. A novel nanotubular
                 morphologies, and advanced strategies for photocatalytic applications   TiO 2-based plug-flow reactor for gas phase photocatalytic degradation
                 of WO 3 based  photocatalysts[J]. Journal of Hazardous Materials,   of toluene[J]. Chemical Engineering Journal, 2022, 437(27): 135323-
                 2022, 428(48): 128218-128253.                     135936.
            [24]  LEE J H, MUN S J, LEE S Y, et al. Promoted charge separation and   [42]  SERHANE Y, BELKESSA N,  BOUZAZA,  et al. Continuous air
                 specific surface area  via interlacing  of N-doped titanium dioxide   purification by front flow photocatalytic reactor: Modelling of the
                 nanotubes on carbon nitride nanosheets for photocatalytic degradation   influence of  mass transfer step under simulated real conditions[J].
                 of Rhodamine B[J]. Nanotechnology Reviews, 2022, 11(1): 1592-1605.   Chemosphere, 2022, 295(51): 133809-133819.
            [25]  LIU Y, HAN J, ZENG X P, et al. g-C 3N 4 homophase junction with   [43]  DAI B L, ZHAO W, WEI W, et al. Photocatalytic reduction of CO 2
                 high crystallinity using MoS 2 as cocatalyst for robust  visible-light-   and degradation of Bisphenol-S by g-C 3N 4/Cu 2O@Cu  S-scheme
                 driven photocatalytic pollutant degradation[J]. ChemistrySelect, 2022,   heterojunction:  Study on the photocatalytic performance  and
                 7(3): 3884-3896.                                  mechanism insight[J]. Carbon, 2022, 193(60): 272-284.
            [26]  WANG  Y T, ZHU C  Z,  ZUO Q  C,  et al. 0D/2D Co 3O 4/TiO 2   [44]  NI S Y, FU Z R, LI L, et al. Step-scheme heterojunction g-C 3N 4/TiO 2
                 Z-scheme heterojunction for boosted photocatalytic degradation and   for efficient photocatalytic degradation of tetracycline hydrochloride
                 mechanism investigation[J]. Applied  Catalysis B:  Environmental,   under UV light[J]. Colloids and  Surfaces A: Physicochemical and
                 2020, 278: 119298-119308.                         Engineering Aspects, 2022, 649(30): 129475-129487.
            [27]  XIAO M, WANG Z  L, LU  M Q,  et al. Hollow nanostructures for   [45]  ZHANG  L  Y,  YUE M, DAI T T,  et al. Fabrication  of a coated
   71   72   73   74   75   76   77   78   79   80   81