Page 87 - 《精细化工》2023年第4期
P. 87

す 4 ᱌                        ᱻ๖⺧喑ぶ:  ᱕䉕㏑㐡㉍ധ܊㘣⩢㼐䉕⮱ⵁ⾣䔈ᆂ                                    g773g


            ࣯㔰᪴⡛喟                                                  159(1): 449-453.
                                                               [21]  AFEWERKI S, WANG X C, RUIZ-ESPARZA G U, et al. Combined
            [1]   ADAM A A, OJUR DENNIS J, AL-HADEETHI Y, et al. State of the   catalysis for engineering bioinspired, lignin-based, long-lasting,
                 art and new directions on electrospun lignin/cellulose nanofibers for   adhesive, self-mending, antimicrobial hydrogels[J]. ACS Nano, 2020,
                 supercapacitor application: A systematic literature review[J].   14(12): 17004-17017.
                 Polymers, 2020, 12(12): 2884.                 [22]  ZHANG  K F, PANG Y J, CHEN  C Z,  et al. Stretchable and
            [2]   WAN J, XIE J,  MACKANIC D G,  et al. Status, promises,  and   conductive cellulose hydrogel electrolytes for flexible and foldable
                 challenges of nanocomposite solid-state electrolytes for safe and high   solid-state supercapacitors[J]. Carbohydrate Polymers, 2022, 293:
                 performance lithium batteries[J]. Materials Today Nano, 2018,  4:   119673.
                 1-16.                                         [23]  SANNINO A, DEMITRI C, MADAGHIELE M. Biodegradable
            [3]   WANG F X, WU X W, YUAN X  H,  et al. Latest advances in   cellulose-based hydrogels: design and applications[J].  Materials,
                 supercapacitors: From new electrode materials to novel device   2009, 2(2): 353-373.
                 designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.     [24]  LI J X (叻ᮣ䰗),  CHEN S S (䭵઱ጲ), MA S S (侙ጲጲ),  et al.
            [4]   XUN Z Y (ᄨ͸⢶), HOU P (Ӝ⧋), LIU Y (݅ᬥ), et al. Research   Preparation and application of cellulose-based advanced  functional
                 progress of polymer electrolytes in supercapacitors[J]. Journal of   materials[J]. Journal of Functional Materials (ߌ㘪ᱽ᫆), 2020,
                 Materials Engineerin (ᱽ᫆ጒ⼸), 2019, 47(11): 71-83.     51(8): 8039-8047.
            [5]   YI J X, HUO  Z P, ABDULLAH  M  A,  et al. Development  and   [25]  BAI Y, ZHAO W W, BI S H, et al. Preparation and application of
                 application of electrolytes in supercapacitors[J]. Progress in   cellulose gel in flexible supercapacitors[J]. Journal of Energy
                 Chemistry, 2018, 30(11): 1624.                    Storage, 2021, 42: 103058.
            [6]   ZHANG W P (ᑍ࢘Ꭰ). Study on the enhancement of fluorescence   [26]  GU P, LIU  W, HOU Q X,  et al. Lignocellulose-derived hydrogel/
                 emission induced  by supramolecular gel[D]. Wuhan:  Huazhong   aerogel-based flexible quasi-solid-state supercapacitors with
                 University of Science and Technology (ࡻ͚⻾ឭ๔႓), 2008.     high-performance:  A review[J]. Journal of Materials Chemistry A,
            [7]   CHEN B (䭵᪹), LYU Y B (ूᒓќ), CHEN K W (䄹ज◉), et al.   2021, 9(25): 14233-14264.
                 Research progress of solid-state supercapacitors electrolytes and its   [27]  ABIDIN S Z Z, ALI A M, JAAFAR N K, et al. Electrical properties
                 classifications[J]. High Voltage  Engineering  (倅⩢ࢸឭᱜ), 2019,   of cellulose acetate-based polymer gel electrolytes[C]//AIP Conference
                 45(3): 929-939.                                   Proceedings. AIP Publishing LLC, 2017, 1885(1): 020088.
            [8]   CHEN H Z. Biotechnology of lignocellulose[M]. Springer   [28]  CHENG D, YANG X,  HE Z  H,  et al. Potential of cellulose-based
                 Netherlands, 2014.                                materials for lithium-ion batteries (LIB) separator membranes[J].
            [9]   BIAN H Y, JIAO  L,  WANG R  B,  et al. Lignin nanoparticles as   Journal of Bioresources and Bioproducts, 2016, 1(1): 18-21.
                 nano-spacers for tuning  the viscoelasticity of cellulose nanofibril   [29]  ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose
                 reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer   nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
                 Journal, 2018, 107: 267-274.                  [30]  MA C, MA M G, LI Z W, et al. Nanocellulose composites–Properties
            [10]  DAI L, CHENG  T, WANG  Y,  et al. Injectable  all-polysaccharide   and applications[J]. Paper and Biomaterials, 2018, 3(2): 51-63.
                 self-assembling  hydrogel: A promising scaffold for localized   [31]  WANG Y J (⢸䯲ै), BAI Q H (⮪⻸㏏), WU G C (кᵦ᜽), et al.
                 therapeutic proteins[J]. Cellulose, 2019, 26(11): 6891-6901.     Nanocellulose-based conductive composites and their application in
            [11]  KADOKAWA J I, MURAKAMI M A, KANEKO Y. A facile   flexible energy storage devices: A review[J]. Materials Reports (ᱽ᫆
                 preparation  of  gel  materials from a solution  of cellulose in ionic   ᄩ្), 2022, (23): 1-15.
                 liquid[J]. Carbohydrate Research, 2008, 343(4): 769-772.     [32]  CHEN H J Y, JIANG J, ZHANG S, et al. Surface modification of
            [12]  KARAASLAN M  A, TSHABALALA M A,  YELLE D J,  et al.   cellulose originated from different plant sources through TEMPO/
                 Nanoreinforced biocompatible hydrogels from wood hemicelluloses   laccase/O 2 oxidation[J]. Industrial Crops and Products, 2022, 176:
                 and cellulose whiskers[J]. Carbohydrate Polymers, 2011, 86(1):   114295.
                 192-201.                                      [33]  ZHANG L  L, LU H  L,  YU  J,  et al.  Preparation of high-strength
            [13]  MA  L S (侙ͪ㢻), YUAN  Y F (㟾Ⴔም),  ZHANG L L (ᑍ㢶㢶),   sustainable lignocellulose gels and their applications for
                 et al. The key role of lignocellulose component in the preparation   antiultraviolet weathering and  dye removal[J]. ACS Sustainable
                 and functionalization of its composite hydrogels[J]. Transactions of   Chemistry & Engineering, 2019, 7(3): 2998-3009.
                 China Pulp and Paper (͚ప䕍㏥႓្), 2021, 36(4): 64-75.     [34]  CHEN M F, CHEN J Z, ZHOU W J, et al. High-performance flexible
            [14]  ZHANG L L, SHI C, LU H L, et al. Porous cellulose gel-regulated   and self-healable quasi-solid-state zinc-ion hybrid supercapacitor
                 flower-like ZnO-Cu nanoparticles for enhancing interfacial catalysis   based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel
                 activity and recyclability in environmental catalysis[J]. Applied   electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(46):
                 Surface Science, 2022, 597: 153737.               26524-26532.
            [15]  ZHANG  L L,  LU  H L, CHU J J,  et al. Lignin-directed control  of   [35]  YE Y H,  ZHANG Y F, CHEN  Y,  et al. Cellulose  nanofibrils
                 silver  nanoparticles with  tunable size in porous lignocellulose   enhanced, strong, stretchable, freezing-tolerant ionic conductive
                 hydrogels and their application in  catalytic reduction[J]. ACS   organohydrogel for multi-functional sensors[J]. Advanced Functional
                 Sustainable Chemistry & Engineering, 2020, 8(33): 12655-12663.     Materials, 2020, 30(35): 2003430.
            [16]  SUN Z, QU K Q, YOU Y, et al. Overview of cellulose-based flexible   [36]  SONG A, HUANG Y, LIU B, et al. Gel polymer electrolyte based on
                 materials for supercapacitors[J]. Journal of Materials Chemistry A,   polyethylene glycol composite lignocellulose  matrix with higher
                 2021, 9(12): 7278-7300.                           comprehensive performances[J]. Electrochimica Acta, 2017, 247:
            [17]  ZHAO W W, JIANG M Y, WANG W K, et al. Flexible transparent   505-515.
                 supercapacitors: Materials and devices[J]. Advanced Functional   [37]  MO F N, CHEN  Z, LIANG G J,  et al. Zwitterionic sulfobetaine
                 Materials, 2021, 31(11): 2009136.                 hydrogel electrolyte building separated positive/negative ion
            [18]  PARK J H, RANA H H, LEE J Y,  et al. Renewable flexible   migration channels for aqueous Zn-MnO 2 batteries with superior rate
                 supercapacitors based on all-lignin-based hydrogel electrolytes and   capabilities[J]. Advanced Energy Materials, 2020, 10(16): 2000035.
                 nanofiber electrodes[J]. Journal of Materials Chemistry  A, 2019,   [38]  GE W J, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable
                 7(28): 16962-16968.                               conductive and stretchable electrolyte hydrogels with tolerance to
            [19]  FEUILLADE G, PERCHE P. Ion-conductive macromolecular gels   dehydration and extreme cold conditions[J]. Chemical Engineering
                 and membranes for solid lithium  cells[J]. Journal of Applied   Journal, 2021, 408: 127306.
                 Electrochemistry, 1975, 5(1): 63-69.          [39]  WANG B J, LI J M, HOU C Y, et al. Stable hydrogel electrolytes for
            [20]  WALKOWIAK M, ZALEWSKA A, JESIONOWSKI T, et al. Effect   flexible and submarine-use Zn-ion batteries[J]. ACS Applied
                 of chemically  modified  silicas on the properties of hybrid  gel   Materials & Interfaces, 2020, 12(41): 46005-46014.
                 electrolyte for Li-ion batteries[J]. Journal of power sources, 2006,   [40]  KHAWAS P, DEKA S C. Isolation and characterization of cellulose
   82   83   84   85   86   87   88   89   90   91   92