Page 87 - 《精细化工》2023年第4期
P. 87
す 4 ᱻ๖⺧喑ぶ: ᱕䉕㏑㐡㉍ധ܊㘣⩢㼐䉕⮱ⵁ⾣䔈ᆂ g773g
࣯㔰᪴⡛喟 159(1): 449-453.
[21] AFEWERKI S, WANG X C, RUIZ-ESPARZA G U, et al. Combined
[1] ADAM A A, OJUR DENNIS J, AL-HADEETHI Y, et al. State of the catalysis for engineering bioinspired, lignin-based, long-lasting,
art and new directions on electrospun lignin/cellulose nanofibers for adhesive, self-mending, antimicrobial hydrogels[J]. ACS Nano, 2020,
supercapacitor application: A systematic literature review[J]. 14(12): 17004-17017.
Polymers, 2020, 12(12): 2884. [22] ZHANG K F, PANG Y J, CHEN C Z, et al. Stretchable and
[2] WAN J, XIE J, MACKANIC D G, et al. Status, promises, and conductive cellulose hydrogel electrolytes for flexible and foldable
challenges of nanocomposite solid-state electrolytes for safe and high solid-state supercapacitors[J]. Carbohydrate Polymers, 2022, 293:
performance lithium batteries[J]. Materials Today Nano, 2018, 4: 119673.
1-16. [23] SANNINO A, DEMITRI C, MADAGHIELE M. Biodegradable
[3] WANG F X, WU X W, YUAN X H, et al. Latest advances in cellulose-based hydrogels: design and applications[J]. Materials,
supercapacitors: From new electrode materials to novel device 2009, 2(2): 353-373.
designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. [24] LI J X (叻ᮣ䰗), CHEN S S (䭵ጲ), MA S S (侙ጲጲ), et al.
[4] XUN Z Y (ᄨ⢶), HOU P (Ӝ⧋), LIU Y (݅ᬥ), et al. Research Preparation and application of cellulose-based advanced functional
progress of polymer electrolytes in supercapacitors[J]. Journal of materials[J]. Journal of Functional Materials (ߌ㘪ᱽ᫆), 2020,
Materials Engineerin (ᱽ᫆ጒ⼸), 2019, 47(11): 71-83. 51(8): 8039-8047.
[5] YI J X, HUO Z P, ABDULLAH M A, et al. Development and [25] BAI Y, ZHAO W W, BI S H, et al. Preparation and application of
application of electrolytes in supercapacitors[J]. Progress in cellulose gel in flexible supercapacitors[J]. Journal of Energy
Chemistry, 2018, 30(11): 1624. Storage, 2021, 42: 103058.
[6] ZHANG W P (ᑍ࢘Ꭰ). Study on the enhancement of fluorescence [26] GU P, LIU W, HOU Q X, et al. Lignocellulose-derived hydrogel/
emission induced by supramolecular gel[D]. Wuhan: Huazhong aerogel-based flexible quasi-solid-state supercapacitors with
University of Science and Technology (ࡻ͚ឭ๔႓), 2008. high-performance: A review[J]. Journal of Materials Chemistry A,
[7] CHEN B (䭵᪹), LYU Y B (ूᒓќ), CHEN K W (䄹ज◉), et al. 2021, 9(25): 14233-14264.
Research progress of solid-state supercapacitors electrolytes and its [27] ABIDIN S Z Z, ALI A M, JAAFAR N K, et al. Electrical properties
classifications[J]. High Voltage Engineering (倅⩢ࢸឭᱜ), 2019, of cellulose acetate-based polymer gel electrolytes[C]//AIP Conference
45(3): 929-939. Proceedings. AIP Publishing LLC, 2017, 1885(1): 020088.
[8] CHEN H Z. Biotechnology of lignocellulose[M]. Springer [28] CHENG D, YANG X, HE Z H, et al. Potential of cellulose-based
Netherlands, 2014. materials for lithium-ion batteries (LIB) separator membranes[J].
[9] BIAN H Y, JIAO L, WANG R B, et al. Lignin nanoparticles as Journal of Bioresources and Bioproducts, 2016, 1(1): 18-21.
nano-spacers for tuning the viscoelasticity of cellulose nanofibril [29] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose
reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
Journal, 2018, 107: 267-274. [30] MA C, MA M G, LI Z W, et al. Nanocellulose composites–Properties
[10] DAI L, CHENG T, WANG Y, et al. Injectable all-polysaccharide and applications[J]. Paper and Biomaterials, 2018, 3(2): 51-63.
self-assembling hydrogel: A promising scaffold for localized [31] WANG Y J (⢸䯲ै), BAI Q H (⮪㏏), WU G C (кᵦ), et al.
therapeutic proteins[J]. Cellulose, 2019, 26(11): 6891-6901. Nanocellulose-based conductive composites and their application in
[11] KADOKAWA J I, MURAKAMI M A, KANEKO Y. A facile flexible energy storage devices: A review[J]. Materials Reports (ᱽ᫆
preparation of gel materials from a solution of cellulose in ionic ᄩ្), 2022, (23): 1-15.
liquid[J]. Carbohydrate Research, 2008, 343(4): 769-772. [32] CHEN H J Y, JIANG J, ZHANG S, et al. Surface modification of
[12] KARAASLAN M A, TSHABALALA M A, YELLE D J, et al. cellulose originated from different plant sources through TEMPO/
Nanoreinforced biocompatible hydrogels from wood hemicelluloses laccase/O 2 oxidation[J]. Industrial Crops and Products, 2022, 176:
and cellulose whiskers[J]. Carbohydrate Polymers, 2011, 86(1): 114295.
192-201. [33] ZHANG L L, LU H L, YU J, et al. Preparation of high-strength
[13] MA L S (侙ͪ㢻), YUAN Y F (㟾Ⴔም), ZHANG L L (ᑍ㢶㢶), sustainable lignocellulose gels and their applications for
et al. The key role of lignocellulose component in the preparation antiultraviolet weathering and dye removal[J]. ACS Sustainable
and functionalization of its composite hydrogels[J]. Transactions of Chemistry & Engineering, 2019, 7(3): 2998-3009.
China Pulp and Paper (͚ప䕍㏥႓្), 2021, 36(4): 64-75. [34] CHEN M F, CHEN J Z, ZHOU W J, et al. High-performance flexible
[14] ZHANG L L, SHI C, LU H L, et al. Porous cellulose gel-regulated and self-healable quasi-solid-state zinc-ion hybrid supercapacitor
flower-like ZnO-Cu nanoparticles for enhancing interfacial catalysis based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel
activity and recyclability in environmental catalysis[J]. Applied electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(46):
Surface Science, 2022, 597: 153737. 26524-26532.
[15] ZHANG L L, LU H L, CHU J J, et al. Lignin-directed control of [35] YE Y H, ZHANG Y F, CHEN Y, et al. Cellulose nanofibrils
silver nanoparticles with tunable size in porous lignocellulose enhanced, strong, stretchable, freezing-tolerant ionic conductive
hydrogels and their application in catalytic reduction[J]. ACS organohydrogel for multi-functional sensors[J]. Advanced Functional
Sustainable Chemistry & Engineering, 2020, 8(33): 12655-12663. Materials, 2020, 30(35): 2003430.
[16] SUN Z, QU K Q, YOU Y, et al. Overview of cellulose-based flexible [36] SONG A, HUANG Y, LIU B, et al. Gel polymer electrolyte based on
materials for supercapacitors[J]. Journal of Materials Chemistry A, polyethylene glycol composite lignocellulose matrix with higher
2021, 9(12): 7278-7300. comprehensive performances[J]. Electrochimica Acta, 2017, 247:
[17] ZHAO W W, JIANG M Y, WANG W K, et al. Flexible transparent 505-515.
supercapacitors: Materials and devices[J]. Advanced Functional [37] MO F N, CHEN Z, LIANG G J, et al. Zwitterionic sulfobetaine
Materials, 2021, 31(11): 2009136. hydrogel electrolyte building separated positive/negative ion
[18] PARK J H, RANA H H, LEE J Y, et al. Renewable flexible migration channels for aqueous Zn-MnO 2 batteries with superior rate
supercapacitors based on all-lignin-based hydrogel electrolytes and capabilities[J]. Advanced Energy Materials, 2020, 10(16): 2000035.
nanofiber electrodes[J]. Journal of Materials Chemistry A, 2019, [38] GE W J, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable
7(28): 16962-16968. conductive and stretchable electrolyte hydrogels with tolerance to
[19] FEUILLADE G, PERCHE P. Ion-conductive macromolecular gels dehydration and extreme cold conditions[J]. Chemical Engineering
and membranes for solid lithium cells[J]. Journal of Applied Journal, 2021, 408: 127306.
Electrochemistry, 1975, 5(1): 63-69. [39] WANG B J, LI J M, HOU C Y, et al. Stable hydrogel electrolytes for
[20] WALKOWIAK M, ZALEWSKA A, JESIONOWSKI T, et al. Effect flexible and submarine-use Zn-ion batteries[J]. ACS Applied
of chemically modified silicas on the properties of hybrid gel Materials & Interfaces, 2020, 12(41): 46005-46014.
electrolyte for Li-ion batteries[J]. Journal of power sources, 2006, [40] KHAWAS P, DEKA S C. Isolation and characterization of cellulose