Page 88 - 《精细化工》2023年第4期
P. 88
g774g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
nanofibers from culinary banana peel using high-intensity Science, 2012, 335(6075): 1468-1471.
ultrasonication combined with chemical treatment[J]. Carbohydrate [61] ZHANG L L, LU H L, YU J, et al. Contribution of lignin to the
Polymers, 2016, 137: 608-616. microstructure and physical performance of three-dimensional
[41] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers lignocellulose hydrogels[J]. Cellulose, 2019, 26(4): 2375-2388.
prepared by TEMPO-mediated oxidation of native cellulose[J]. [62] YUN X J (䓽ᮀ䲆), CHI M C (䔌ᬻ䊲), GUO C Y (䘚ᮕ㞠), et al.
Biomacromolecules, 2007, 8(8): 2485-2491. Research progress in lignin-based hydrogels[J]. China Pulp & Paper
[42] PIRCHER N, CARBAJAL L, SCHIMPER C, et al. Impact of (͚ప䕍㏥), 2019, 38(10): 62-67.
selected solvent systems on the pore and solid structure of cellulose [63] ZHANG Y, MAO J C, JIANG W K, et al. Lignin sulfonate induced
aerogels[J]. Cellulose, 2016, 23(3): 1949-1966. ultrafast polymerization of double network hydrogels with
[43] ZHANG X B (ᑍᮀࢇ), XIN H Y (䓈⊤⦈), XU S (䃥❪), et al. anti-freezing, high strength and conductivity and their sensing
Cellulose gel polymer electrolytes and its application in applications at extremely cold conditions[J]. Composites Part B:
supercapacitors[J]. Chinese Journal of Applied Chemistry (Ꮑ⩕ࡃ Engineering, 2021, 217: 108879.
႓), 2020, 37(5): 547-554. [64] HUANG W, LI Y, GU H, et al. Gel polymer electrolyte with
[44] ZHAO D W, CHEN C J, ZHANG Q, et al. High performance, enhanced performance based on lignocellulose modified by NaOH/
flexible, solid-state supercapacitors based on a renewable and Urea for lithium sulfur batteries[J]. ChemistrySelect, 2020, 5(43): ϋ
biodegradable mesoporous cellulose membrane[J]. Advanced Energy 13461-13468.
Materials, 2017, 7(18): 1700739. [65] LIU T, REN X L, ZHANG J M, et al. Highly compressible lignin
[45] QIN C R, LU A. Flexible, anti-freezing self-charging power system hydrogel electrolytes via double-crosslinked strategy for superior
composed of cellulose based supercapacitor and triboelectric foldable supercapacitors[J]. Journal of Power Sources, 2020, 449:
nanogenerator[J]. Carbohydrate Polymers, 2021, 274: 118667. 227532.
[46] WANG Y, ZHANG L N, LU A. Transparent, antifreezing, ionic [66] GONG S D, HUANG Y, CAO H J, et al. A green and
conductive cellulose hydrogel with stable sensitivity at subzero environment-friendly gel polymer electrolyte with higher
temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(44): performances based on the natural matrix of lignin[J]. Journal of
41710-41716. Power Sources, 2016, 307: 624-633.
[47] DU Z, SU Y Z, QU Y Y, et al. A mechanically robust, biodegradable [67] ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of
and high performance cellulose gel membrane as gel polymer lignin: From bioresources to materials and their applications in
electrolyte of lithium-ion battery[J]. Electrochimica Acta, 2019, 299: rechargeable batteries and supercapacitors[J]. Progress in Energy and
19-26. Combustion Science, 2020, 76: 100788.
[48] YU F, ZHANG H B, ZHAO L Z, et al. A flexible cellulose/ [68] WANG X Z, XIA Q Q, JING S S, et al. Strong, hydrostable, and
+
methylcellulose gel polymer electrolyte endowing superior Li degradable straws based on cellulose-lignin reinforced composites[J].
conducting property for lithium ion battery[J]. Carbohydrate Small, 2021, 17(18): 2008011.
polymers, 2020, 246: 116622. [69] WANG Y C, LIU S S, WANG Q, et al. Nanolignin filled conductive
[49] HUANG Z L, LIU C, FENG X Y, et al. Effect of regeneration hydrogel with improved mechanical, anti-freezing, UV-shielding and
solvent on the characteristics of regenerated cellulose from lithium transparent properties for strain sensing application [J]. Int J Biol
bromide trihydrate molten salt[J]. Cellulose, 2020, 27(16): 9243-9256. Macromol, 2022, 205: 442-451.
[50] WANG Z H, LEE Y H, KIM S W, et al. Why cellulose-based [70] WANG G H (⢸ۍࡻ), CHEN H Z (䭵≗」). Lignin classification
electrochemical energy storage devices?[J]. Advanced Materials, and its effect on product properties[J]. Biotechnology & Business (⩌
2021, 33(28): 2000892. ➖ϔ͇ឭᱜ), 2015, (5): 14-20.
[51] ZHANG L L, ZHANG Q, YU J, et al. Strengthened cellulosic gels by [71] TIAN J (⩝䲆), YANG Y Q (Ვ⯷⥡), SONG J L (Ⴘै哆). Current
the chemical gelation of cellulose via crosslinking with TEOS[J]. advances in chemical modification of lignin and its application in
Cellulose, 2019, 26(18): 9819-9829. composite materials[J]. Journal of Cellulose Science and Technology
[52] LIN S Y, WANG C M, HSIEH P T, et al. A novel gel polymer (㏑㐡㉍႓̻ឭᱜ), 2018, 26(4): 76-85.
electrolyte based on lithium salt with an ethyl cellulose[J]. Colloid [72] GAN D L, SHUAI T, WANG X, et al. Mussel-inspired redox-active
and Polymer Science, 2009, 287(11): 1355-1358. and hydrophilic conductive polymer nanoparticles for adhesive
[53] LU N, NA R Q, LI L B, et al. Rational design of antifreezing hydrogel bioelectronics[J]. Nano-Micro Letters, 2020, 12(1): 1-16.
organohydrogel electrolytes for flexible supercapacitors[J]. ACS [73] WANG C Z (⢸эᔄ). The study of biopolymer/PPy and nanosphere
Applied Energy Materials, 2020, 3(2): 1944-1951. composite hydrogels[D]. Changsha: Hunan University (⎃ࢄ๔႓),
[54] YUE Z L, WEN F, GAO S J, et al. Preparation of three-dimensional 2017.
interconnected macroporous cellulosic hydrogels for soft tissue [74] SHABANOV N S, RABADANOV K S, GAFUROV M M, et al.
engineering[J]. Biomaterials, 2010, 31(32): 8141-8152. Lignin-based gel polymer electrolyte for cationic conductivity[J].
[55] XUN Z Y, NI S P, GAO Z H, et al. Construction of polymer Polymers, 2021, 13(14): 2306.
electrolyte based on soybean protein isolate and hydroxyethyl [75] GAO W J, FATEHI P. Lignin for polymer and nanoparticle
cellulose for a flexible solid-state supercapacitor[J]. Polymers, 2019, production: Current status and challenges[J]. The Canadian Journal
11(11): 1895. of Chemical Engineering, 2019, 97(11): 2827-2842.
[56] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for [76] CHEN W S, YU H P, LIU Y X, et al. A method for isolating cellulose
advanced battery chemistries[J]. Nature Reviews Materials, 2019, nanofibrils from wood and their morphological characteristics[J].
4(5): 312-330. Acta Polym Sin, 2010, 11: 1320-1326.
[57] QIU Z C (ᬹ), WANG H Y (⢸⊤), ZHANG M Y (ᑍ㒻ξ). [77] BERGLUND J, MIKKELSEN D, FLANAGAN B M, et al. Wood
Utilization of lignin in pulping wastewater[J]. Southwest Pulp and hemicelluloses exert distinct biomechanical contributions to cellulose
Paper (㺬ࢄ䕍㏥), 2005, 34(1): 26-28. fibrillar networks[J]. Nature Communications, 2020, 11(1): 1-16.
[58] BALOCH M, LABIDI J. Lignin biopolymer: The material of choice [78] QIU F, HUANG Y, LUO C, et al. An acid-resistant gel polymer
for advanced lithium-based batteries[J]. RSC Advances, 2021, electrolyte based on lignocellulose of natural biomass for
11(38): 23644-23653. supercapacitors[J]. Energy Technology, 2020, 8(5): 2000009.
[59] GAN D L, XING W S, JIANG L L, et al. Plant-inspired adhesive and [79] ZHANG L L (ᑍ㢶㢶). The study on the preparation of lignocellulose
tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic gel and its application in adsorption/catalytic materials[D]. Nanjing喟
redox catechol chemistry[J]. Nature communications, 2019, 10(1): Nanjing Forestry University (ࢄϙ᳄͇๔႓), 2019.
1-10. [80] ZHANG S F (ᑍ㉍䷻), LIN R (᳄⦋), LIU Y L (݅χͪ), et al.
[60] MILCZAREK G, INGANÄS O. Renewable cathode materials from Research progress of cellulose-based packaging barrier film[J]. Fine
biopolymer/conjugated polymer interpenetrating networks[J]. Chemicals (㏳ࡃጒ), 2022, 39(11): 2225-2234.