Page 88 - 《精细化工》2023年第4期
P. 88

g774g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

                 nanofibers  from culinary banana peel using high-intensity   Science, 2012, 335(6075): 1468-1471.
                 ultrasonication combined with chemical treatment[J]. Carbohydrate   [61]  ZHANG L  L,  LU  H L, YU J,  et al.  Contribution of lignin to the
                 Polymers, 2016, 137: 608-616.                     microstructure and physical performance of three-dimensional
            [41]  SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers   lignocellulose hydrogels[J]. Cellulose, 2019, 26(4): 2375-2388.
                 prepared by  TEMPO-mediated oxidation of native cellulose[J].   [62]  YUN X J (䓽ᮀ䲆), CHI M C (䔌ᬻ䊲), GUO C Y (䘚ᮕ㞠), et al.
                 Biomacromolecules, 2007, 8(8): 2485-2491.         Research progress in lignin-based hydrogels[J]. China Pulp & Paper
            [42]  PIRCHER N, CARBAJAL  L, SCHIMPER C,  et al. Impact of   (͚ప䕍㏥), 2019, 38(10): 62-67.
                 selected solvent systems on the pore and solid structure of cellulose   [63]  ZHANG Y, MAO J C, JIANG W K, et al. Lignin sulfonate induced
                 aerogels[J]. Cellulose, 2016, 23(3): 1949-1966.     ultrafast polymerization of double network hydrogels with
            [43]  ZHANG X B (ᑍᮀࢇ),  XIN H Y  (䓈⊤⦈), XU S (䃥❪),  et al.   anti-freezing, high strength and conductivity and their sensing
                 Cellulose gel polymer  electrolytes and its application in   applications at extremely  cold conditions[J]. Composites Part B:
                 supercapacitors[J]. Chinese Journal of Applied Chemistry (Ꮑ⩕ࡃ  Engineering, 2021, 217: 108879.
                 ႓), 2020, 37(5): 547-554.                     [64]  HUANG  W,  LI Y, GU H,  et al. Gel polymer electrolyte with
            [44]  ZHAO D W, CHEN C J, ZHANG  Q,  et al. High performance,   enhanced performance based on lignocellulose modified by NaOH/
                 flexible, solid-state supercapacitors based on a renewable and   Urea for lithium sulfur batteries[J]. ChemistrySelect, 2020, 5(43): ϋ
                 biodegradable mesoporous cellulose membrane[J]. Advanced Energy   13461-13468.
                 Materials, 2017, 7(18): 1700739.              [65]  LIU T, REN X L, ZHANG J M, et al. Highly compressible lignin
            [45]  QIN C R, LU A. Flexible, anti-freezing self-charging power system   hydrogel electrolytes  via double-crosslinked strategy for superior
                 composed of cellulose based supercapacitor and triboelectric   foldable supercapacitors[J]. Journal of Power Sources,  2020, 449:
                 nanogenerator[J]. Carbohydrate Polymers, 2021, 274: 118667.     227532.
            [46]  WANG Y, ZHANG L N, LU A. Transparent, antifreezing, ionic   [66]  GONG S D, HUANG  Y,  CAO H J,  et al.  A green and
                 conductive cellulose hydrogel with  stable sensitivity at subzero   environment-friendly gel polymer electrolyte with higher
                 temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(44):   performances based on the natural  matrix of lignin[J]. Journal of
                 41710-41716.                                      Power Sources, 2016, 307: 624-633.
            [47]  DU Z, SU Y Z, QU Y Y, et al. A mechanically robust, biodegradable   [67]  ZHU J D, YAN C  Y, ZHANG X,  et al. A sustainable platform of
                 and high  performance  cellulose gel membrane as gel polymer   lignin: From bioresources to materials and their applications in
                 electrolyte of lithium-ion battery[J]. Electrochimica Acta, 2019, 299:   rechargeable batteries and supercapacitors[J]. Progress in Energy and
                 19-26.                                            Combustion Science, 2020, 76: 100788.
            [48]  YU F, ZHANG  H B, ZHAO  L Z,  et al. A  flexible cellulose/   [68]  WANG X Z, XIA  Q Q, JING S S,  et al. Strong, hydrostable,  and
                                                          +
                 methylcellulose gel polymer electrolyte endowing  superior Li    degradable straws based on cellulose-lignin reinforced composites[J].
                 conducting property for  lithium ion  battery[J]. Carbohydrate   Small, 2021, 17(18): 2008011.
                 polymers, 2020, 246: 116622.                  [69]  WANG Y C, LIU S S, WANG Q, et al. Nanolignin filled conductive
            [49]  HUANG Z L, LIU C, FENG X  Y,  et al. Effect of regeneration   hydrogel with improved mechanical, anti-freezing, UV-shielding and
                 solvent on the characteristics of regenerated cellulose from lithium   transparent properties for strain sensing application [J]. Int J Biol
                 bromide trihydrate molten salt[J]. Cellulose, 2020, 27(16): 9243-9256.     Macromol, 2022, 205: 442-451.
            [50]  WANG  Z H,  LEE Y H, KIM S W,  et al. Why cellulose-based   [70]  WANG G H (⢸ۍࡻ), CHEN H Z (䭵≗」). Lignin classification
                 electrochemical  energy storage devices?[J]. Advanced Materials,   and its effect on product properties[J]. Biotechnology & Business (⩌
                 2021, 33(28): 2000892.                            ➖ϔ͇ឭᱜ), 2015, (5): 14-20.
            [51]  ZHANG L L, ZHANG Q, YU J, et al. Strengthened cellulosic gels by   [71]  TIAN J (⩝䲆), YANG Y Q (Ვ⯷⥡), SONG J L (Ⴘै哆). Current
                 the chemical gelation of cellulose  via crosslinking with TEOS[J].   advances in chemical  modification  of lignin and its application in
                 Cellulose, 2019, 26(18): 9819-9829.               composite materials[J]. Journal of Cellulose Science and Technology
            [52]  LIN S  Y, WANG  C M, HSIEH P T,  et al. A novel gel polymer   (㏑㐡㉍⻾႓̻ឭᱜ), 2018, 26(4): 76-85.
                 electrolyte based on lithium salt with an ethyl cellulose[J]. Colloid   [72]  GAN D L, SHUAI T, WANG X, et al. Mussel-inspired redox-active
                 and Polymer Science, 2009, 287(11): 1355-1358.     and hydrophilic conductive polymer nanoparticles for adhesive
            [53]  LU N, NA R  Q,  LI L  B,  et al. Rational design  of antifreezing   hydrogel bioelectronics[J]. Nano-Micro Letters, 2020, 12(1): 1-16.
                 organohydrogel electrolytes for flexible supercapacitors[J]. ACS   [73]  WANG C Z (⢸эᔄ). The study of biopolymer/PPy and nanosphere
                 Applied Energy Materials, 2020, 3(2): 1944-1951.     composite hydrogels[D]. Changsha: Hunan University (⎃ࢄ๔႓),
            [54]  YUE Z L, WEN F, GAO S J, et al. Preparation of three-dimensional   2017.
                 interconnected macroporous cellulosic hydrogels  for soft tissue   [74]  SHABANOV N S, RABADANOV K S, GAFUROV M M,  et al.
                 engineering[J]. Biomaterials, 2010, 31(32): 8141-8152.     Lignin-based gel polymer  electrolyte  for cationic conductivity[J].
            [55]  XUN Z  Y, NI S P, GAO Z H,  et al. Construction  of polymer   Polymers, 2021, 13(14): 2306.
                 electrolyte based on soybean protein isolate and  hydroxyethyl   [75]  GAO W J, FATEHI P. Lignin for polymer and nanoparticle
                 cellulose for a flexible solid-state supercapacitor[J]. Polymers, 2019,   production: Current status and challenges[J]. The Canadian Journal
                 11(11): 1895.                                     of Chemical Engineering, 2019, 97(11): 2827-2842.
            [56]  LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for   [76]  CHEN W S, YU H P, LIU Y X, et al. A method for isolating cellulose
                 advanced battery chemistries[J]. Nature Reviews Materials, 2019,   nanofibrils from wood and their morphological characteristics[J].
                 4(5): 312-330.                                    Acta Polym Sin, 2010, 11: 1320-1326.
            [57]  QIU Z C (⻸෋ᬹ), WANG H Y (⢸⊤⃲), ZHANG M Y (ᑍ㒻ξ).   [77]  BERGLUND J, MIKKELSEN D, FLANAGAN B M,  et al. Wood
                 Utilization  of  lignin in  pulping wastewater[J]. Southwest Pulp and   hemicelluloses exert distinct biomechanical contributions to cellulose
                 Paper (㺬ࢄ䕍㏥), 2005, 34(1): 26-28.                 fibrillar networks[J]. Nature Communications, 2020, 11(1): 1-16.
            [58]  BALOCH M, LABIDI J. Lignin biopolymer: The material of choice   [78]  QIU F, HUANG Y, LUO C,  et al. An acid-resistant gel polymer
                 for advanced lithium-based batteries[J]. RSC Advances, 2021,   electrolyte based on lignocellulose of natural biomass for
                 11(38): 23644-23653.                              supercapacitors[J]. Energy Technology, 2020, 8(5): 2000009.
            [59]  GAN D L, XING W S, JIANG L L, et al. Plant-inspired adhesive and   [79]  ZHANG L L (ᑍ㢶㢶). The study on the preparation of lignocellulose
                 tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic   gel and its application in adsorption/catalytic materials[D]. Nanjing喟
                 redox catechol chemistry[J]. Nature communications,  2019, 10(1):   Nanjing Forestry University (ࢄϙ᳄͇๔႓), 2019.
                 1-10.                                         [80]  ZHANG S F (ᑍ㉍䷻), LIN R (᳄⦋), LIU  Y  L (݅χͪ),  et al.
            [60]  MILCZAREK G, INGANÄS O. Renewable cathode materials from   Research progress of cellulose-based packaging barrier film[J]. Fine
                 biopolymer/conjugated  polymer  interpenetrating  networks[J].  Chemicals (㇫㏳ࡃጒ), 2022, 39(11): 2225-2234.
   83   84   85   86   87   88   89   90   91   92   93