Page 121 - 《精细化工》2023年第6期
P. 121

第 6 期                孟良晨,等:  二维手风琴状棕榈酸/MXene 复合相变材料的制备及性能                               ·1271·


                (2)MXene 的加入大大增加了复合 PCM 的热                         enhancement on phase change materials for thermal energy storage:
                                                                   A review[J]. Energy Storage Materials, 2020, 25: 251-295.
            稳定性和热导率,对储热性能和相变温度的影响很小。
                                                               [16]  SHI X,  YAZDANI M  R, AJDARY  R,  et al. Leakage-proof
            当 MXene 质量分数为 20%时,复合材料的热导率为                           microencapsulation of phase change materials by emulsification with
                                                                   acetylated cellulose  nanofibrils[J]. Carbohydrate Polymers, 2021,
            0.48 W/(m·K),比纯 PA〔0.16 W/(m·K)〕高 200.0%。
                                                                   254: 117279.
            PA/MXene 复合 PCM 表现出较高的相变焓值,范围                      [17]  YAN Y H (颜永毫), HAN Y (韩云), ZHANG Q G (张全国), et al.
            为 154.5~156.5 J/g。MXene 质量分数的增加也提高                     Patent analysis  of microencapsulated phase change materials[J].
                                                                   Journal  of Huanghe S & T College  (黄河科技学院学报), 2022,
            了复合 PCM 的热导率。                                          24(2): 79-82
                (3)与纯 PA 相比,复合 PCM 的光热性能和光                     [18]  WAN Y, ZHOU P, LIU  Y,  et al. Novel wearable polyacrylonitrile/
                                                                   phase-change material sheath/core nano-fibers fabricated by coaxial
            吸收效率有明显提高。所制备的 PA/MXene 复合                             electro-spinning[J]. RSC Advances, 2016, 6 (25): 21204-21209.
            PCM 的光热转换效率高达 84.5%,以期在提高太阳                        [19]  ZHANG H, GAO X, CHEN C, et al. A capric-palmitic-stearic acid
                                                                   ternary eutectic mixture/expanded graphite composite phase change
            能开发利用中获得广阔的应用前景。                                       material for thermal energy storage[J]. Composites, Part A: Applied
                                                                   Science and Manufacturing, 2016, 87: 138-145.
            参考文献:                                              [20]  CHENG F, WEN R, HUANG Z, et al. Preparation and analysis of
                                                                   lightweight wall material with expanded graphite (EG)/paraffin
            [1]   HAJJAR A, MEHRYAN S A  M, GHALAMBAZ M,  et al. Time   composites for solar energy storage[J]. Appled Thermal Engineering,
                 periodic natural convection heat transfer in a nano-encapsulated   2017, 120: 107-114.
                 phase-change suspension[J]. International Journal of  Mechanical   [21]  WANG K (王凯), YAN  T (闫霆), KUAI Z H  (蒯子涵),  et al.
                 Sciences, 2020, 166: 105243.
            [2]   CUI  Y, XIE J, LIU J,  et al.  A review on  phase change material   Preparation  and properties of stearyl  alcohol/Co 3O 4/expanded
                 application in building[J]. Advances in Mechanical Engineering,   graphite composite phase change material[J]. Fine Chemicals (精细
                                                                   化工), 2021, 38(9): 1808-1812.
                 2017, 9(6): 1687814017700828.
            [3]   LUO J, ZOU D, WANG Y, et al. Battery thermal management systems   [22]  TIAN B, YANG  W, LUO  L,  et al. Synergistic enhancement of
                 (BTMs) based on  phase change material (PCM):  A comprehensive   thermal  conductivity for expanded graphite and carbon fiber in
                 review[J]. Chemical Engineering Journal, 2022, 430: 132741.   paraffin/EVA form-stable phase change  materials[J]. Solar Energy,
            [4]   PRIETO C, LOPEZ-ROMAN A, MARTINEZ N, et al. Improvement   2016, 127: 48-55.
                 of phase change materials (PCM) used for solar process heat   [23]  DU X, QIU J,  DENG S,  et al. Alkylated nanofibrillated cellulose/
                 applications[J]. Molecules, 2021, 26 (5): 1260.   carbon nanotubes aerogels supported form-stable phase change
            [5]   WANG K,  YAN T, ZHAO  Y M, et  al. Preparation and thermal   composites with improved  n-alkanes loading capacity and thermal
                 properties  of  palmitic acid @ZnO/expanded graphite  composite   conductivity[J]. ACS  Appl Mater Interfaces, 2020, 12  (5): 5695-
                 phase change material for heat storage[J]. Energy, 2022, 242: 122972.   5703.
            [6]   HASHEM Z S M, MEHRYAN S A M, SHEREMET  M,  et al.   [24]  ZHAO M Y (赵梦阳), ZHANG Y A (张宇昂), TANG B T (唐炳涛).
                 Thermo-hydrodynamic and entropy generation analysis  of a dilute   Preparation and  properties of thermal conductivity enhanced
                 aqueous suspension enhanced with nano-encapsulated phase change   polyurethane  based flexible and form-stable phase change
                 material[J]. International Journal of Mechanical Sciences, 2020, 178:   materials[J]. Fine Chemicals (精细化工), 2022, 39(6): 1155-1161.
                 105609.                                       [25]  WEI H T, XIE X Z, LI X Q, et al. Preparation and characterization of
            [7]   YANG R, LI D, SALAZAR S L, et al. Photothermal properties and   capric-myristic-stearic  acid eutectic mixture/modified  expanded
                 photothermal conversion performance of nano- enhanced paraffin as a   vermiculite composite as a form-stable phase change  material[J].
                 phase change thermal energy  storage material[J].  Solar  Energy   Applied Energy, 2016, 178: 616-623.
                 Materials and Solar Cells, 2021, 219: 110792.   [26]  ZUO X, ZHAO X, LI J,  et al.Enhanced thermal conductivity of
            [8]   KOUSKSOU T,  BRUEL P, JAMIL A,  et al. Energy storage:   form-stable composite phase-change materials with graphite hybridizing
                 Applications and challenges[J]. Solar Energy Materials  and Solar   expanded perlite/paraffin[J]. Solar Energy, 2020, 209: 85-95.
                 Cells, 2014, 120: 59-80.                      [27]  SARI A, KARAIPEKLI A, ALKAN C. Preparation, characterization
            [9]   AKRAM N, MOAZZAM U, ALI M,  et al. Improved  waste heat   and thermal properties of lauric acid/expanded perlite as novel form-
                 recovery through surface of kiln using phase change material[J].   stable composite  phase change material[J]. Chemical Engineering
                 Thermal Science, 2018, 22 (2): 1089-1098.         Journal, 2009, 155 (3): 899-904.
            [10]  SELIMEFENDIGIL F, ÖZTOP H F. Impacts of using an elastic fin   [28]  LI C, WANG M, CHEN Z, et al. Enhanced thermal conductivity and
                 on the phase change process under magnetic field during hybrid   photo-to-thermal performance of diatomite-based composite phase
                 nanoliquid convection through a PCM-packed bed system[J].   change materials for thermal  energy storage[J]. Journal  of Energy
                 International Journal of Mechanical Sciences, 2022, 216: 106958.   Storage, 2021, 34: 102171.
            [11]  UMAIR M M, ZHANG  Y, IQBAL  K,  et al. Novel strategies and   [29]  WEN R L,  ZHANG X G, HUANG  Z H,  et al. Preparation and
                 supporting materials applied to shape-stabilize organic phase change   thermal properties of fatty acid/diatomite form-stable composite
                 materials for thermal energy storage–A review[J]. Applied Energy,   phase change  material for thermal energy storage[J]. Solar Energy
                 2019, 235: 846-873.                               Materials and Solar Cells, 2018, 178: 273-279.
            [12]  PIELICHOWSKA K, PIELICHOWSK K. Phase change materials for   [30]  ZHANG P, MENG Z N, ZHU H,  et al. Melting heat transfer
                 thermal energy storage[J]. Progress in Materials Science, 2014, 65:   characteristics of a composite phase change material fabricated by
                 67-123.                                           paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983.
            [13]  SAFARI  A, SAIDUR R, SULAIMAN F  A,  et al. A  review  on   [31]  MISHRA A K, LAHIRI B B, PHILIP J. Carbon black nano particle
                 supercooling  of  phase change  materials in thermal energy storage   loaded lauric acid-based form-stable phase change material with
                 systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70:   enhanced thermal  conductivity and photo-thermal conversion for
                 905-919.                                          thermal energy storage[J]. Energy, 2020, 191: 116572.
            [14]  WANG J, XIE H, XIN Z, et al. Enhancing thermal conductivity of   [32]  LI M, WANG C, Preparation and characterization of GO/PEG photo-
                 palmitic acid based phase change materials with carbon nanotubes as   thermal conversion form-stable composite phase change materials[J].
                 fillers[J]. Solar Energy, 2010, 84 (2): 339-344.   Renewable Energy, 2019, 141: 1005-1012.
            [15]  WU S F,  YAN  T, KUAI Z H,  et al. Thermal conductivity                    (下转第 1318 页)
   116   117   118   119   120   121   122   123   124   125   126