Page 121 - 《精细化工》2023年第6期
P. 121
第 6 期 孟良晨,等: 二维手风琴状棕榈酸/MXene 复合相变材料的制备及性能 ·1271·
(2)MXene 的加入大大增加了复合 PCM 的热 enhancement on phase change materials for thermal energy storage:
A review[J]. Energy Storage Materials, 2020, 25: 251-295.
稳定性和热导率,对储热性能和相变温度的影响很小。
[16] SHI X, YAZDANI M R, AJDARY R, et al. Leakage-proof
当 MXene 质量分数为 20%时,复合材料的热导率为 microencapsulation of phase change materials by emulsification with
acetylated cellulose nanofibrils[J]. Carbohydrate Polymers, 2021,
0.48 W/(m·K),比纯 PA〔0.16 W/(m·K)〕高 200.0%。
254: 117279.
PA/MXene 复合 PCM 表现出较高的相变焓值,范围 [17] YAN Y H (颜永毫), HAN Y (韩云), ZHANG Q G (张全国), et al.
为 154.5~156.5 J/g。MXene 质量分数的增加也提高 Patent analysis of microencapsulated phase change materials[J].
Journal of Huanghe S & T College (黄河科技学院学报), 2022,
了复合 PCM 的热导率。 24(2): 79-82
(3)与纯 PA 相比,复合 PCM 的光热性能和光 [18] WAN Y, ZHOU P, LIU Y, et al. Novel wearable polyacrylonitrile/
phase-change material sheath/core nano-fibers fabricated by coaxial
吸收效率有明显提高。所制备的 PA/MXene 复合 electro-spinning[J]. RSC Advances, 2016, 6 (25): 21204-21209.
PCM 的光热转换效率高达 84.5%,以期在提高太阳 [19] ZHANG H, GAO X, CHEN C, et al. A capric-palmitic-stearic acid
ternary eutectic mixture/expanded graphite composite phase change
能开发利用中获得广阔的应用前景。 material for thermal energy storage[J]. Composites, Part A: Applied
Science and Manufacturing, 2016, 87: 138-145.
参考文献: [20] CHENG F, WEN R, HUANG Z, et al. Preparation and analysis of
lightweight wall material with expanded graphite (EG)/paraffin
[1] HAJJAR A, MEHRYAN S A M, GHALAMBAZ M, et al. Time composites for solar energy storage[J]. Appled Thermal Engineering,
periodic natural convection heat transfer in a nano-encapsulated 2017, 120: 107-114.
phase-change suspension[J]. International Journal of Mechanical [21] WANG K (王凯), YAN T (闫霆), KUAI Z H (蒯子涵), et al.
Sciences, 2020, 166: 105243.
[2] CUI Y, XIE J, LIU J, et al. A review on phase change material Preparation and properties of stearyl alcohol/Co 3O 4/expanded
application in building[J]. Advances in Mechanical Engineering, graphite composite phase change material[J]. Fine Chemicals (精细
化工), 2021, 38(9): 1808-1812.
2017, 9(6): 1687814017700828.
[3] LUO J, ZOU D, WANG Y, et al. Battery thermal management systems [22] TIAN B, YANG W, LUO L, et al. Synergistic enhancement of
(BTMs) based on phase change material (PCM): A comprehensive thermal conductivity for expanded graphite and carbon fiber in
review[J]. Chemical Engineering Journal, 2022, 430: 132741. paraffin/EVA form-stable phase change materials[J]. Solar Energy,
[4] PRIETO C, LOPEZ-ROMAN A, MARTINEZ N, et al. Improvement 2016, 127: 48-55.
of phase change materials (PCM) used for solar process heat [23] DU X, QIU J, DENG S, et al. Alkylated nanofibrillated cellulose/
applications[J]. Molecules, 2021, 26 (5): 1260. carbon nanotubes aerogels supported form-stable phase change
[5] WANG K, YAN T, ZHAO Y M, et al. Preparation and thermal composites with improved n-alkanes loading capacity and thermal
properties of palmitic acid @ZnO/expanded graphite composite conductivity[J]. ACS Appl Mater Interfaces, 2020, 12 (5): 5695-
phase change material for heat storage[J]. Energy, 2022, 242: 122972. 5703.
[6] HASHEM Z S M, MEHRYAN S A M, SHEREMET M, et al. [24] ZHAO M Y (赵梦阳), ZHANG Y A (张宇昂), TANG B T (唐炳涛).
Thermo-hydrodynamic and entropy generation analysis of a dilute Preparation and properties of thermal conductivity enhanced
aqueous suspension enhanced with nano-encapsulated phase change polyurethane based flexible and form-stable phase change
material[J]. International Journal of Mechanical Sciences, 2020, 178: materials[J]. Fine Chemicals (精细化工), 2022, 39(6): 1155-1161.
105609. [25] WEI H T, XIE X Z, LI X Q, et al. Preparation and characterization of
[7] YANG R, LI D, SALAZAR S L, et al. Photothermal properties and capric-myristic-stearic acid eutectic mixture/modified expanded
photothermal conversion performance of nano- enhanced paraffin as a vermiculite composite as a form-stable phase change material[J].
phase change thermal energy storage material[J]. Solar Energy Applied Energy, 2016, 178: 616-623.
Materials and Solar Cells, 2021, 219: 110792. [26] ZUO X, ZHAO X, LI J, et al.Enhanced thermal conductivity of
[8] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage: form-stable composite phase-change materials with graphite hybridizing
Applications and challenges[J]. Solar Energy Materials and Solar expanded perlite/paraffin[J]. Solar Energy, 2020, 209: 85-95.
Cells, 2014, 120: 59-80. [27] SARI A, KARAIPEKLI A, ALKAN C. Preparation, characterization
[9] AKRAM N, MOAZZAM U, ALI M, et al. Improved waste heat and thermal properties of lauric acid/expanded perlite as novel form-
recovery through surface of kiln using phase change material[J]. stable composite phase change material[J]. Chemical Engineering
Thermal Science, 2018, 22 (2): 1089-1098. Journal, 2009, 155 (3): 899-904.
[10] SELIMEFENDIGIL F, ÖZTOP H F. Impacts of using an elastic fin [28] LI C, WANG M, CHEN Z, et al. Enhanced thermal conductivity and
on the phase change process under magnetic field during hybrid photo-to-thermal performance of diatomite-based composite phase
nanoliquid convection through a PCM-packed bed system[J]. change materials for thermal energy storage[J]. Journal of Energy
International Journal of Mechanical Sciences, 2022, 216: 106958. Storage, 2021, 34: 102171.
[11] UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and [29] WEN R L, ZHANG X G, HUANG Z H, et al. Preparation and
supporting materials applied to shape-stabilize organic phase change thermal properties of fatty acid/diatomite form-stable composite
materials for thermal energy storage–A review[J]. Applied Energy, phase change material for thermal energy storage[J]. Solar Energy
2019, 235: 846-873. Materials and Solar Cells, 2018, 178: 273-279.
[12] PIELICHOWSKA K, PIELICHOWSK K. Phase change materials for [30] ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer
thermal energy storage[J]. Progress in Materials Science, 2014, 65: characteristics of a composite phase change material fabricated by
67-123. paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983.
[13] SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on [31] MISHRA A K, LAHIRI B B, PHILIP J. Carbon black nano particle
supercooling of phase change materials in thermal energy storage loaded lauric acid-based form-stable phase change material with
systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: enhanced thermal conductivity and photo-thermal conversion for
905-919. thermal energy storage[J]. Energy, 2020, 191: 116572.
[14] WANG J, XIE H, XIN Z, et al. Enhancing thermal conductivity of [32] LI M, WANG C, Preparation and characterization of GO/PEG photo-
palmitic acid based phase change materials with carbon nanotubes as thermal conversion form-stable composite phase change materials[J].
fillers[J]. Solar Energy, 2010, 84 (2): 339-344. Renewable Energy, 2019, 141: 1005-1012.
[15] WU S F, YAN T, KUAI Z H, et al. Thermal conductivity (下转第 1318 页)