Page 167 - 《精细化工》2023年第6期
P. 167

第 6 期   陈秀琼,等:  基于互穿网络技术构筑的氧化海藻酸钠/纤维素纳米晶/聚丙烯酰胺-明胶双网络水凝胶与性能  ·1317·


            对比空白对照,OSA/CNCs/PAM-GT 体系的相对                       步提高了 167%(OSA/2.0% CNCs/PAM-GT 复合水凝
            ALP 活性更高,说明 CNCs 的掺入能够提高细胞的                        胶)。而且它们的溶胀率随 CNCs 含量增加呈下降趋
            分化能力。其中,当 CNCs 的含量为 1.5%时,细胞                       势而生物降解性呈上升趋势,但是它们的变化幅度
            的分化效果最好。之后再增加 CNCs 含量,细胞的                          较小,说明 CNCs 能够在一定程度上调控复合水凝
            相对 ALP 活性下降,这可能是由于随着 CNCs 含量                       胶的物化性能。细胞相容性实验结果表明,MG63
            的增大,导致复合水凝胶材料的孔隙率变小,从而                             细胞能够黏附在 OSA/CNCs/PAM-GT 复合水凝胶
            影响了细胞的分化。                                          上,同时能够进行细胞增殖和分化。当 CNCs 的含
                                                               量为 0.5%时,细胞增殖效果最佳,而 CNCs 的含量
                                                               为 1.5%时,细胞分化效果最显著。以上结果说明,
                                                               将 CNCs 掺杂到 OSA/PAM 互穿网络基体中能够有
                                                               效地提高 OSA/CNCs/PAM-GT 生物性能,从而使其
                                                               能够适用于组织工程和伤口敷料领域。

                                                               参考文献:
                                                               [1]   DARNELL M, SUN J, MEHTA  M,  et al. Performance  and
                                                                   biocompatibility of extremely tough alginate/polyacrylamide
                                                                   hydrogels[J]. Biomaterials, 2013, 34: 8042-8048.
                                                               [2]   SUN J, ZHAO X, ILLEPERUMA W, et al. Highly stretchable and
                                                                   tough hydrogels[J]. Nature, 2012, 489: 133-136.
                                                               [3]   PAWAR S N, EDGAR K J.  Alginate derivatization: A review of
                                                                   chemistry, properties and applications[J]. Biomaterials,  2012, 33:
                                                                   3279-3305.
                                                               [4]   VENKATESAN J, BHATNAGAR I, MANIVASAGAN P,  et al.
                                                                   Alginate composites for bone tissue engineering: A review[J].
                                                                   International Journal of Biological Macromolecules, 2015, 72: 269-
                                                                   281.
                                                               [5]   CHEN X Q (陈秀琼), FENG M X (冯美西), LI Z Y (李正月), et al.
                                                                   Preparation of alginate derivatives via  UGI reaction and their
                                                                   drug-loaded microcapsules for drug delivery[J]. Fine Chemicals (精
                                                                   细化工), 2021, 38(3): 585-592.
                                                               [6]   LEE K  Y, MOONEY D J. Hydrogels for tissue engineering[J].
                                                                   Chemical Review, 2001, 101:1869-1879.
                                                               [7]   IONITA M, PANDELE M A, IOVU  H. Sodium alginate/graphene
            a—OSA/PAM-GT;b—OSA/0.5% CNCs/PAM-GT;c—OSA/1.0%         oxide composite films with enhanced thermal and mechanical
            CNCs/PAM-GT;d—OSA/1.5% CNCs/PAM-GT;e—OSA/2.0%          properties[J]. Carbohydrate Polymers, 2013, 94:339-344.
            CNCs/PAM-GT                                        [8]   YANG C H, WANG M X, HAIDER H,  et al. Strengthening
            图 9  MG63 细胞在复合水凝胶上分别培养 2 和 7 d 的增                     alginate/polyacrylamide hydrogels using various multivalent cations[J].
                                                                   ACS Applied Materials & Interfaces, 2013, 5: 10418-10422.
                  殖情况(A);MG63 细胞在复合水凝胶上培养 7 d                  [9]   SHAH N, UL-ISLAM M, KHATTAK W A,  et al. Overview of
                                                                   bacterial cellulose composites: A multipurpose advanced material[J].
                  的分化情况(B)                                         Carbohydrate Polymers, 2013, 98: 1585-1598.
            Fig. 9    Cell proliferation viability of MG63 cells cultured   [10]  HABIBI Y, LICIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry,
                   on the composite hydrogels for 2 and 7 d (A); Cell   self-assembly, and  applications[J]. Chemical Review, 2010, 110(6):
                   differentiation  of MG63 cells cultured on the   3479-3500.
                   composite hydrogels for 7 d (B)             [11]  GAO W W, SUN L  Y, ZHANG Z T,  et al. Cellulose nanocrystals
                                                                   reinforced gelatin/bioactive glass nanocomposite scaffolds for
                                                                   potential application in bone regeneration[J]. Journal of Biomaterials
                                                                   Science Polymer Edition, 2020, 31(8): 984-998.
            3   结论                                             [12]  HUANG W, WANG Y,  HUANG  Z,  et al. On-demand dissolvable
                                                                   self-healing hydrogel based on carboxymethyl chitosan and cellulose
                                                                   nanocrystal for deep partial thickness burn wound healing[J]. ACS
                 针对海藻酸盐水凝胶在生物医学应用领域的功                              Applied Materials & Interfaces, 2018, 10(48): 41076-41088.
                                                               [13]  REAKASAME S, BOCCACCINI A R. Oxidized alginate-based
            能缺陷,通过双网络水凝胶技术结合 CNCs 补强和                              hydrogels for tissue engineering applications: A review [J].
            明胶表面覆积的方法构建了 OSA/CNCs/PAM-GT                           Biomacromolecules, 2018, 19(1): 3-21.
                                                               [14]  SU K, WANG  C  M. Recent advances in the use of  gelatin in
            复合水凝胶。考察了 CNCs 含量对复合水凝胶微观                              biomedical research[J]. Biotechnology Letters, 2015, 37: 2139-2145.
                                                               [15]  CHEN X Q, YAN H Q, BAO C L, et al. Fabrication and evaluation
            形态、孔隙结构、力学性能、溶胀性、生物降解性                                 of homogeneous alginate/polyacrylamide-chitosan-gelatin composite
            和生物相容性的影响。结果表明,CNCs 能够与基                               hydrogel scaffolds based on the interpenetrating networks for tissue
                                                                   engineering[J]. Polymer Engineering & Science, 2022, 62: 116-128.
            体中的聚合物 OSA 和 PAM 产生相互作用力。并且                        [16]  LEE  K Y, MOONEY  D J.  Alginate: Properties and biomedical
                                                                   applications[J]. Polymer Engineering & Science, 2012, 37: 106-126.
            随着 CNCs 含量的增加,OSA/CNCs/PAM-GT 复合水凝                 [17]  WANG H C, CHEN X Q, WEN Y S, et al. A study on the correlation
            胶的孔隙率由 88.4445%(OSA/PAM-GT 复合水凝胶)                      between the oxidation degree of oxidized sodium alginate on its
                                                                   degradability and gelation[J]. Polymers, 2022, 14: 1679.
            逐步下降至 84.6428%(OSA/2.0% CNCs/PAM-GT 复合             [18]  BAO C L, CHEN X Q, LIU C,  et al. Extraction of cellulose
                                                                   nanocrystals from microcrystalline cellulose for the stabilization of
            水凝胶),抗压强度相比于 OSA/PAM-GT 复合水凝胶稳                         cetyltrimethylammonium bromide-enhanced Pickering emulsions[J].
   162   163   164   165   166   167   168   169   170   171   172