Page 168 - 《精细化工》2023年第6期
P. 168

·1318·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   [25]  TURCO G, MARSICH E, BELLOMO F,  et al. Alginate/
                 2021, 608: 125442.                                hydroxyapatite biocomposite for bone ingrowth: A trabecular
            [19]  YAN  H  Q,  HUANG D G, CHEN X  Q,  et al. A  novel and   structure with high and isotropic connectivity[J]. Biomacromolecules,
                 homogeneous scaffold material: Preparation and evaluation of   2009, 10(6): 1575-1583.
                 alginate/bacterialcellulose nanocrystals/collagen composite hydrogel   [26]  MONTANHEIRO  T L, MONTAGNA L S, PATRULEA V,  et al.
                 for tissue engineering[J]. Polymer Bulletin, 2018, 75: 985-1000.   Evaluation of cellulose nanocrystal addition  on morphology,
            [20]  ZHU Q M, CHEN X Q, LIU Z W, et al. Development of alginate-   compression modulus and cytotoxicity of  poly(3-hydroxybutyrate-
                 chitosan composite scaffold incorporation of bacterial cellulose for   co-3-hydroxyvalerate) scaffolds[J]. Journal  of Materials Science,
                 bone tissue engineering[J]. International Journal of Polymeric Materials   2019, 54(9): 7198-7210.
                 and Polymeric Biomaterials, 2021: 2007384.    [27]  SOWJANYA J A, SINGH J, MOHITA T,  et al. Biocomposite
            [21]  YAN H Q, CHEN X Q, FENG M X, et al. Entrapment of bacterial   scaffolds containing chitosan/alginate/nano-silica for bone tissue
                 cellulose nanocrystals stabilized Pickering emulsions droplets in   engineering[J]. Colloids and Surfaces B:  Biointerfaces, 2013, 109:
                 alginate beads for hydrophobic drug delivery[J]. Colloids and   294-300.
                 Surfaces B: Biointerfaces, 2019, 177: 112-120.   [28]  BERNSTEIN-LEVI O, OCHBAUM G, BITTON R.  The effect of
            [22]  ISLAM M S, KARIM M R. Fabrication and characterization of poly   covalently linked RGD peptide on the conformation of
                 (vinyl alcohol)/alginate blend nanofibers by electrospinning method[J].   polysaccharides in aqueous solutions[J].  Colloids and Surfaces B:
                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   Biointerfaces, 2016, 137: 214-220.
                 2010, 366:135-140.                            [29]  TCHOBANIAN A, OOSTERWYCK H V, FARDIM P. Polysaccharides
            [23]  DUTTA S D, HEXIU J, PATEL D K, et al. 3D-printed bioactive and   for tissue engineering: Current landscape  and future prospects[J].
                 biodegradable hydrogel scaffolds of alginate/gelatin/cellulose   Carbohydrate Polymers, 2019, 205: 601-625.
                 nanocrystals  for  tissue engineering[J]. International Journal of   [30]  MONTANHEIRO T L, MONTAGNA L S, DE FARIAS M A, et al.
                 Biological Macromolecules, 2021, 167: 644-658.    Cytotoxicity and  physico-chemical  evaluation of acetylated and
            [24]  VALENTE J F A, VALENTE T A M, ALVES P, et al. Alginate based   pegylated cellulose nanocrystals[J]. Journal of Nanoparticle Research,
                 scaffolds for bone tissue engineering[J]. Materials Science & Engineering   2018, 20(8): 1-12.
                 C-Materials for Biological Applications, 2012, 32: 2596-2603.




            (上接第 1271 页)                                           two-dimensional MXenes for environmental applications: Recent
                                                                   progress, challenges, and prospects[J]. FlatChem, 2021, 28: 100256.
            [33]  WANG W,  UMAIR M M, QIU J, et al. Electromagnetic and solar
                 energy conversion and storage based on Fe 3O 4-functionalised   [41]  MEHRALI M, TAHAN  L S, MEHRALI M,  et al. Preparation  of
                 graphene/phase change material nanocomposites[J]. Energy Conversion   nitrogen-doped graphene/palmitic  acid shape stabilized  composite
                 and Management, 2019, 196: 1299-1305.             phase change material with remarkable thermal properties for
            [34]  IBRAHIM  Y, MESLAM M, EID K. A review of MXenes as   thermal energy storage[J]. Applied Energy, 2014, 135: 339-349.
                 emergent materials for dye removal from wastewater[J]. Separation   [42]  LI S Y (李仕友), HU J  Y (胡俊毅), HE J Q (贺俊钦), et al.
                 and Purification Technology, 2022, 282: 120083.   Preparation  of MXene/SA gel microspheres and  its  adsorption
            [35]  AGHAMOHAMMADI H, ESLAMI-FARSANI R, CASTILLO-     performance for U(Ⅵ)[J]. Acta Materiae Compositae Sinica (复合材
                 MARTINEZ. Recent trends in the development of MXenes and   料学报), 2022, 39(10): 4868-4878.
                 MXene-based composites as anode materials for Li-ion batteries[J].   [43]  LI C, YU H, SONG Y,  et al. Synthesis and characterization of
                 Journal of Energy Storage, 2021, 47: 103572.      PEG/ZSM-5 composite  phase change  materials for latent heat
            [36]  YAO Y, ZHAO J, YANG X. Recent advance in electromagnetic   storage[J]. Renewable Energy, 2018, 121: 45-52.
                 shielding of MXenes[J]. Chinese  Chemical  Letters, 2021, 32 (2):   [44]  ARMAROLI N, BALZANI V, EID K, et al. The future of energy
                 620-634.                                          supply: Challenges and opportunities[J]. Angewandte Chemie
            [37]  PEI Y, ZHANG X, HUI Z. Ti 3C 2T x MXene for sensing applications:   International Edition, 2007, 46:52-66.
                 Recent progress, design principles, and future perspectives[J]. ACS   [45]  CAO  Y F, FAN D L, LIN S H,  et al.  Branched alkylated
                 Nano, 2021, 15 (3): 3996-4017.                    polynorbornene and 3D flower-like MoS 2 nanospheres  reinforced
            [38]  QU K,  HUANG  K, XU  Z.  Recent progress in the design and   phase change composites with high thermal energy storage capacity
                 fabrication of MXene-based membranes[J]. Frontiers of Chemical   and photothermal conversion efficiency[J]. Renewable Energy, 2021,
                 Science and Engineering, 2021, 15 (4): 820-836.   179: 687-695.
            [39]  HONG L F, GUO  R  T, YUAN Y,  et al. Recent progress of two-   [46]  DU X, QIU J, DENG Z, et al. Flame-retardant and solid-solid phase
                 dimensional MXenes in photocatalytic  applications: A  review[J].   change composites based on dopamine-decorated BP  nano-sheets/
                 Materials Today Energy, 2020, 18: 100521.         polyurethane for efficient solar-to-thermal energy storage[J]. Renewable
            [40]  JAFFARI Z H,  ABUABDOU S M A, NG D  Q,  et al. Insight into   Energy, 2021, 164: 1-10.



            (上接第 1286 页)                                           polyurethane and the wear resistance of coatings[J]. Leather Science
                                                                   and Engineering (皮革科学与工程), 2018, 28 (6): 5-11.
            [12]  HUA J J (华继军), NI J N (倪加旎), GAO C H (高传花),  et al.
                 Synthesis and properties of water-dispersed silicone-polyurethane   [17]  FEI  G Q (费贵强), WANG J (王佼), WANG H H  (王海花), et  al.
                 block copolymers[J]. Polymer Materials Science and Engineering (高  Preparation  and properties of  waterborne polyurethane acrylate/
                 分子材料科学与工程), 2009, 25(2): 28-30.                   graphene oxide anticorrosion coatings[J]. Polymer Materials Science
            [13]  HONG C Y (洪成宇), ZHANG H (张浩), LIU T Y (刘堂宇), et al.   and Engineering (高分子材料科学与工程), 2016, 32(4): 173-178.
                 Influence of castor oil content on properties of halogen-free flame   [18]  HUA Y, LI X, MA L, et al. Self-healing mineralization and enhanced
                 retardant waterborne polyurethane[J]. Polyurethane Industry (聚氨酯  anti-corrosive performance of polyurethane CaCO 3  composite film
                 工业), 2020, 35(3): 16-19.                          via β-CD induction[J]. Materials & Design, 2019, 177: 107856.
            [14]  DUAN Q Y (段启勇), PAN F (潘飞), ZENG X M (曾县明), et al.   [19]  ZHANG X R, MA R N, DU A, et al. Corrosion resistance of organic
                 Castor oil/silane double  modified waterborne polyurethane   coating based on polyhedral oligomeric silsesquioxane-functionalized
                 adhesive[J]. China Adhesive (中国胶粘剂), 2011, 20(6): 10-13.   graphene oxide[J]. Applied  Surface Science, 2019, 484(AUG.1):
            [15]  REN  L F (任龙芳), MA X D (马向东), QIANG T T  (强涛涛).   814-824.
                 Preparation and characterization of castor oil modified  waterborne   [20]  WANG X Y,  CUI Y N, WANG  Y N,  et al. Preparation and
                 polyurethane[J]. Chinese Leather (中国皮革), 2019, 48(5): 42-48.   characteristics of crosslinked fluorinated acrylate modified
            [16]  LIANG F F (梁飞飞), WANG Z Y (王振亚), WANG Z H (王忠辉),   waterborne polyurethane for metal protection coating[J]. Progress in
                 et al. Study on the relationship between the resilience of water-based   Organic Coatings, 2021, 158: 106371.
   163   164   165   166   167   168   169   170   171   172   173