Page 168 - 《精细化工》2023年第6期
P. 168
·1318· 精细化工 FINE CHEMICALS 第 40 卷
Colloids and Surfaces A: Physicochemical and Engineering Aspects, [25] TURCO G, MARSICH E, BELLOMO F, et al. Alginate/
2021, 608: 125442. hydroxyapatite biocomposite for bone ingrowth: A trabecular
[19] YAN H Q, HUANG D G, CHEN X Q, et al. A novel and structure with high and isotropic connectivity[J]. Biomacromolecules,
homogeneous scaffold material: Preparation and evaluation of 2009, 10(6): 1575-1583.
alginate/bacterialcellulose nanocrystals/collagen composite hydrogel [26] MONTANHEIRO T L, MONTAGNA L S, PATRULEA V, et al.
for tissue engineering[J]. Polymer Bulletin, 2018, 75: 985-1000. Evaluation of cellulose nanocrystal addition on morphology,
[20] ZHU Q M, CHEN X Q, LIU Z W, et al. Development of alginate- compression modulus and cytotoxicity of poly(3-hydroxybutyrate-
chitosan composite scaffold incorporation of bacterial cellulose for co-3-hydroxyvalerate) scaffolds[J]. Journal of Materials Science,
bone tissue engineering[J]. International Journal of Polymeric Materials 2019, 54(9): 7198-7210.
and Polymeric Biomaterials, 2021: 2007384. [27] SOWJANYA J A, SINGH J, MOHITA T, et al. Biocomposite
[21] YAN H Q, CHEN X Q, FENG M X, et al. Entrapment of bacterial scaffolds containing chitosan/alginate/nano-silica for bone tissue
cellulose nanocrystals stabilized Pickering emulsions droplets in engineering[J]. Colloids and Surfaces B: Biointerfaces, 2013, 109:
alginate beads for hydrophobic drug delivery[J]. Colloids and 294-300.
Surfaces B: Biointerfaces, 2019, 177: 112-120. [28] BERNSTEIN-LEVI O, OCHBAUM G, BITTON R. The effect of
[22] ISLAM M S, KARIM M R. Fabrication and characterization of poly covalently linked RGD peptide on the conformation of
(vinyl alcohol)/alginate blend nanofibers by electrospinning method[J]. polysaccharides in aqueous solutions[J]. Colloids and Surfaces B:
Colloids and Surfaces A: Physicochemical and Engineering Aspects, Biointerfaces, 2016, 137: 214-220.
2010, 366:135-140. [29] TCHOBANIAN A, OOSTERWYCK H V, FARDIM P. Polysaccharides
[23] DUTTA S D, HEXIU J, PATEL D K, et al. 3D-printed bioactive and for tissue engineering: Current landscape and future prospects[J].
biodegradable hydrogel scaffolds of alginate/gelatin/cellulose Carbohydrate Polymers, 2019, 205: 601-625.
nanocrystals for tissue engineering[J]. International Journal of [30] MONTANHEIRO T L, MONTAGNA L S, DE FARIAS M A, et al.
Biological Macromolecules, 2021, 167: 644-658. Cytotoxicity and physico-chemical evaluation of acetylated and
[24] VALENTE J F A, VALENTE T A M, ALVES P, et al. Alginate based pegylated cellulose nanocrystals[J]. Journal of Nanoparticle Research,
scaffolds for bone tissue engineering[J]. Materials Science & Engineering 2018, 20(8): 1-12.
C-Materials for Biological Applications, 2012, 32: 2596-2603.
(上接第 1271 页) two-dimensional MXenes for environmental applications: Recent
progress, challenges, and prospects[J]. FlatChem, 2021, 28: 100256.
[33] WANG W, UMAIR M M, QIU J, et al. Electromagnetic and solar
energy conversion and storage based on Fe 3O 4-functionalised [41] MEHRALI M, TAHAN L S, MEHRALI M, et al. Preparation of
graphene/phase change material nanocomposites[J]. Energy Conversion nitrogen-doped graphene/palmitic acid shape stabilized composite
and Management, 2019, 196: 1299-1305. phase change material with remarkable thermal properties for
[34] IBRAHIM Y, MESLAM M, EID K. A review of MXenes as thermal energy storage[J]. Applied Energy, 2014, 135: 339-349.
emergent materials for dye removal from wastewater[J]. Separation [42] LI S Y (李仕友), HU J Y (胡俊毅), HE J Q (贺俊钦), et al.
and Purification Technology, 2022, 282: 120083. Preparation of MXene/SA gel microspheres and its adsorption
[35] AGHAMOHAMMADI H, ESLAMI-FARSANI R, CASTILLO- performance for U(Ⅵ)[J]. Acta Materiae Compositae Sinica (复合材
MARTINEZ. Recent trends in the development of MXenes and 料学报), 2022, 39(10): 4868-4878.
MXene-based composites as anode materials for Li-ion batteries[J]. [43] LI C, YU H, SONG Y, et al. Synthesis and characterization of
Journal of Energy Storage, 2021, 47: 103572. PEG/ZSM-5 composite phase change materials for latent heat
[36] YAO Y, ZHAO J, YANG X. Recent advance in electromagnetic storage[J]. Renewable Energy, 2018, 121: 45-52.
shielding of MXenes[J]. Chinese Chemical Letters, 2021, 32 (2): [44] ARMAROLI N, BALZANI V, EID K, et al. The future of energy
620-634. supply: Challenges and opportunities[J]. Angewandte Chemie
[37] PEI Y, ZHANG X, HUI Z. Ti 3C 2T x MXene for sensing applications: International Edition, 2007, 46:52-66.
Recent progress, design principles, and future perspectives[J]. ACS [45] CAO Y F, FAN D L, LIN S H, et al. Branched alkylated
Nano, 2021, 15 (3): 3996-4017. polynorbornene and 3D flower-like MoS 2 nanospheres reinforced
[38] QU K, HUANG K, XU Z. Recent progress in the design and phase change composites with high thermal energy storage capacity
fabrication of MXene-based membranes[J]. Frontiers of Chemical and photothermal conversion efficiency[J]. Renewable Energy, 2021,
Science and Engineering, 2021, 15 (4): 820-836. 179: 687-695.
[39] HONG L F, GUO R T, YUAN Y, et al. Recent progress of two- [46] DU X, QIU J, DENG Z, et al. Flame-retardant and solid-solid phase
dimensional MXenes in photocatalytic applications: A review[J]. change composites based on dopamine-decorated BP nano-sheets/
Materials Today Energy, 2020, 18: 100521. polyurethane for efficient solar-to-thermal energy storage[J]. Renewable
[40] JAFFARI Z H, ABUABDOU S M A, NG D Q, et al. Insight into Energy, 2021, 164: 1-10.
(上接第 1286 页) polyurethane and the wear resistance of coatings[J]. Leather Science
and Engineering (皮革科学与工程), 2018, 28 (6): 5-11.
[12] HUA J J (华继军), NI J N (倪加旎), GAO C H (高传花), et al.
Synthesis and properties of water-dispersed silicone-polyurethane [17] FEI G Q (费贵强), WANG J (王佼), WANG H H (王海花), et al.
block copolymers[J]. Polymer Materials Science and Engineering (高 Preparation and properties of waterborne polyurethane acrylate/
分子材料科学与工程), 2009, 25(2): 28-30. graphene oxide anticorrosion coatings[J]. Polymer Materials Science
[13] HONG C Y (洪成宇), ZHANG H (张浩), LIU T Y (刘堂宇), et al. and Engineering (高分子材料科学与工程), 2016, 32(4): 173-178.
Influence of castor oil content on properties of halogen-free flame [18] HUA Y, LI X, MA L, et al. Self-healing mineralization and enhanced
retardant waterborne polyurethane[J]. Polyurethane Industry (聚氨酯 anti-corrosive performance of polyurethane CaCO 3 composite film
工业), 2020, 35(3): 16-19. via β-CD induction[J]. Materials & Design, 2019, 177: 107856.
[14] DUAN Q Y (段启勇), PAN F (潘飞), ZENG X M (曾县明), et al. [19] ZHANG X R, MA R N, DU A, et al. Corrosion resistance of organic
Castor oil/silane double modified waterborne polyurethane coating based on polyhedral oligomeric silsesquioxane-functionalized
adhesive[J]. China Adhesive (中国胶粘剂), 2011, 20(6): 10-13. graphene oxide[J]. Applied Surface Science, 2019, 484(AUG.1):
[15] REN L F (任龙芳), MA X D (马向东), QIANG T T (强涛涛). 814-824.
Preparation and characterization of castor oil modified waterborne [20] WANG X Y, CUI Y N, WANG Y N, et al. Preparation and
polyurethane[J]. Chinese Leather (中国皮革), 2019, 48(5): 42-48. characteristics of crosslinked fluorinated acrylate modified
[16] LIANG F F (梁飞飞), WANG Z Y (王振亚), WANG Z H (王忠辉), waterborne polyurethane for metal protection coating[J]. Progress in
et al. Study on the relationship between the resilience of water-based Organic Coatings, 2021, 158: 106371.