Page 51 - 《精细化工》2023年第6期
P. 51
第 6 期 韩慧敏,等: UiO-66 的合成、结构及应用进展 ·1201·
[54] SŁAWEK A, JAJKO G, OGORZAŁY K, et al. The influence of [73] ABOU-ELYAZED A S, SUN Y, EL-NAHAS A M, et al. A green
UiO-66 metal-organic framework structural defects on adsorption approach for enhancing the hydrophobicity of UiO-66 (Zr) catalysts
and separation of hexane isomers[J]. Chemistry-A European Journal, for biodiesel production at 298 K[J]. RSC Advances, 2020, 10(68):
2022, 28(29): e202200030. 41283-41295.
[55] MA X, WANG L, ZHANG Q, et al. Switching on the photocatalysis [74] MUSHO T, LI J, WU N. Thermodynamics of the oxygen evolution
of metal-organic frameworks by engineering structural defects[J]. electrocatalysis in a functionalized UiO-66 metal-organic frameworks
Angewandte Chemie, 2019, 131(35): 12303-12307. [J]. International Journal of Quantum Chemistry, 2016, 116(15):
[56] FENG Y, CHEN Q, JIANG M, et al. Tailoring the properties of 1153-1159.
UiO-66 through defect engineering: A review[J]. Industrial & [75] CHANG T E, CHUANG C H, KUNG C W. An iridium-decorated
Engineering Chemistry Research, 2019, 58(38): 17646-17659. metal-organic framework for electrocatalytic oxidation of nitrite[J].
[57] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Electrochemistry Communications, 2021, 122: 106899.
Zr-based metal-organic frameworks: From nano to single crystals[J]. [76] MUKHOPADHYAY S, SHIMONI R, LIBERMAN I, et al. Assembly
Chemistry-A European Journal, 2011, 17(24): 6643-6651. of a metal-organic framework (MOF) membrane on a solid
[58] KOUTSIANOS A, KAZIMIERSKA E, BARRON A R, et al. A new electrocatalyst: Introducing molecular-level control over heterogeneous
approach to enhancing the CO 2 capture performance of defective CO 2 reduction[J]. Angewandte Chemie International Edition, 2021,
UiO-66 via post-synthetic defect exchange[J]. Dalton Transactions, 60(24): 13423-13429.
2019, 48(10): 3349-3359. [77] NASRABADI M, GHASEMZADEH M A, MONFARED M R Z.
[59] WANG J, ZHANG S, HAN Y, et al. UiO-66 (Zr/Ti) for catalytic PET The preparation and characterization of UiO-66 metal-organic
polycondensation[J]. Molecular Catalysis, 2022, 532: 112741. frameworks for the delivery of the drug ciprofloxacin and an
[60] SUN D, LIU W, QIU M, et al. Introduction of a mediator for evaluation of their antibacterial activities[J]. New Journal of
enhancing photocatalytic performance via post-synthetic metal Chemistry, 2019, 43(40): 16033-16040.
exchange in metal-organic frameworks(MOFs)[J]. Chemical [78] ROJAS S, COLINET I, CUNHA D, et al. Toward understanding
Communications, 2015, 51(11): 2056-2059. drug incorporation and delivery from biocompatible metal-organic
[61] LOOSEN A, SIMMS C, SMOLDERS S, et al. Bimetallic Ce/Zr frameworks in view of cutaneous administration[J]. ACS Omega,
UiO-66 metal-organic framework nanostructures as peptidase and 2018, 3(3): 2994-3003.
oxidase nanozymes[J]. ACS Applied Nano Materials, 2021, 4(6): [79] BOROUSHAKI T, DEKAMIN M G, HASHEMIANZADEH S M, et
5748-5757. al. A molecular dynamic simulation study of anticancer agents and
[62] NIU Z, GUAN Q, SHI Y, et al. A lithium-modified zirconium-based UiO-66 as a carrier in drug delivery systems[J]. Journal of Molecular
metal organic framework (UiO-66) for efficient CO 2 adsorption[J]. Graphics and Modelling, 2022, 113: 108147.
New Journal of Chemistry, 2018, 42(24): 19764-19770. [80] ZHENG J, LÖBBERT L, CHHEDA S, et al. Metal-organic framework
[63] CAI X X, XU Q H, TU G M, et al. Synergistic catalysis of ruthenium supported single-site nickel catalysts for butene dimerization[J].
nanoparticles and polyoxometalate integrated within single UiO-66 Journal of Catalysis, 2022, 413: 176-183.
microcrystals for boosting the efficiency of methyl levulinate to [81] DUMA Z G, DYOSIBA X, MOMA J, et al. Thermocatalytic
γ-valerolactone[J]. Frontiers in Chemistry, 2019, 7: 42. hydrogenation of CO 2 to methanol using Cu-ZnO bimetallic catalysts
[64] HAN Y, LIU M, LI K, et al. In situ synthesis of titanium doped supported on metal-organic frameworks[J]. Catalysts, 2022, 12(4): 401.
hybrid metal-organic framework UiO-66 with enhanced adsorption [82] PAN Y, JIANG S S, XIONG W, et al. Supported CuO catalysts on
capacity for organic dyes[J]. Inorganic Chemistry Frontiers, 2017, metal-organic framework (Cu-UiO-66) for efficient catalytic wet
4(11): 1870-1880. peroxide oxidation of 4-chlorophenol in wastewater[J]. Microporous
[65] TAN L, LI Y, LV Q, et al. Development of soluble UiO-66 to and Mesoporous Materials, 2020, 291: 109703.
improve photocatalytic CO 2 reduction[J]. Catalysis Today, 2023, 410: [83] HAN Y, YU J, GUO Q, et al. Synthesis of C 2 oxygenates from syngas
282-288. over UiO-66 supported Rh-Mn catalysts: The effect of functional
[66] SHI L, ZOU X, WANG T, et al. Sunlight photocatalytic degradation groups[J]. New Journal of Chemistry, 2021, 45(2): 696-704.
of ofloxacin using UiO-66/wood composite photocatalysts[J]. Chinese [84] BAE S, ZAINI N, KAMARUDIN K S N, et al. Rapid solvothermal
Chemical Letters, 2022, 33(1): 442-446. synthesis of microporous UiO-66 particles for carbon dioxide
[67] VO T K, KIM J. Facile synthesis of magnetic framework composite capture[J]. Korean Journal of Chemical Engineering, 2018, 35(3):
MgFe 2O 4@UiO-66 (Zr) and its applications in the adsorption- 764-769.
photocatalytic degradation of tetracycline[J]. Environmental Science [85] MUTYALA S, JONNALAGADDA M, IBRAHIM S M. Effect of
and Pollution Research, 2021, 28(48): 68261-68275. modification of UiO-66 for CO 2 adsorption and separation of
[68] QI X M, WU Q, WANG X, et al. Design of UiO-66@BiOIO 3 CO 2/CH 4[J]. Journal of Molecular Structure, 2021, 1227: 129506.
heterostructural composites with remarkable boosted photocatalytic [86] LE V N, VO T K, YOO K S, et al. Enhanced CO 2 adsorption
activities in removing diverse industrial pollutants[J]. Journal of performance on amino-defective UiO-66 with 4-amino benzoic acid
Physics and Chemistry of Solids, 2021, 151: 109903. as the defective linker[J]. Separation and Purification Technology,
[69] ZHANG R, SONG X, LIU Y, et al. Monomolecular VB 2-doped 2021, 274: 119079.
MOFs for photocatalytic oxidation with enhanced stability, recyclability [87] WALTON I, CHEN C, RIMSZA J M, et al. Enhanced sulfur dioxide
and selectivity[J]. Journal of Materials Chemistry A, 2019, 7(47): adsorption in UiO-66 through crystal engineering and chalcogen
26934-26943. bonding[J]. Crystal Growth & Design, 2020, 20(9): 6139-6146.
[70] LI Y, MENG X, LUO R, et al. Aluminum/Tin-doped UiO-66 as [88] VO T K, KIM J, VU T H, et al. Creating Cu(Ⅰ)-decorated defective
Lewis acid catalysts for enhanced glucose isomerization to UiO-66 (Zr) framework with high CO adsorption capacity and
fructose[J]. Applied Catalysis A: General, 2022, 632: 118501. selectivity[J]. Separation and Purification Technology, 2022, 283:
[71] TIMOFEEVA M N, PANCHENKO V N, LUKOYANOV I A, et al. 120237.
Zirconium-containing metal organic frameworks as solid acid [89] QIANG Z, WEN Y, LIANG J, et al. Synthesis and hydrogen storage
catalysts for the N-formylation of aniline with formic acid[J]. studies of metalorganic framework UiO-66[J]. International Journal
Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 355-369. of Hydrogen Energy, 2013, 38(29): 13104-13109.
[72] RAPEYKO A, RODENAS M, LLABRÉS I XAMENA F X. [90] ABID H R, TIAN H, ANG H M, et al. Nanosize Zr-metal organic
Zr-Containing UiO-66 metal-organic frameworks as highly selective framework (UiO-66) for hydrogen and carbon dioxide storage[J].
heterogeneous acid catalysts for the direct ketalization of levulinic Chemical Engineering Journal, 2012, 187: 415-420.
acid[J]. Advanced Sustainable Systems, 2022, 6(3): 2100451. (下转第 1238 页)