Page 51 - 《精细化工》2023年第6期
P. 51

第 6 期                         韩慧敏,等: UiO-66 的合成、结构及应用进展                                 ·1201·


            [54] SŁAWEK  A, JAJKO G, OGORZAŁY K,  et al.  The influence of   [73]  ABOU-ELYAZED  A S, SUN Y, EL-NAHAS A M,  et al. A green
                 UiO-66 metal-organic framework structural defects on adsorption   approach for enhancing the hydrophobicity of UiO-66 (Zr) catalysts
                 and separation of hexane isomers[J]. Chemistry-A European Journal,   for biodiesel production at 298 K[J]. RSC Advances, 2020, 10(68):
                 2022, 28(29): e202200030.                         41283-41295.
            [55]  MA X, WANG L, ZHANG Q, et al. Switching on the photocatalysis   [74]  MUSHO T, LI J, WU N. Thermodynamics of the oxygen evolution
                 of metal-organic frameworks by engineering structural defects[J].   electrocatalysis in a functionalized UiO-66 metal-organic frameworks
                 Angewandte Chemie, 2019, 131(35): 12303-12307.    [J]. International Journal of Quantum Chemistry, 2016, 116(15):
            [56]  FENG Y, CHEN  Q, JIANG M,  et al. Tailoring the properties of   1153-1159.
                 UiO-66 through defect  engineering: A review[J]. Industrial &   [75]  CHANG T E, CHUANG  C H, KUNG C W.  An iridium-decorated
                 Engineering Chemistry Research, 2019, 58(38): 17646-17659.   metal-organic framework for electrocatalytic oxidation of nitrite[J].
            [57]  SCHAATE A, ROY P, GODT  A,  et al. Modulated synthesis of   Electrochemistry Communications, 2021, 122: 106899.
                 Zr-based metal-organic frameworks: From nano to single crystals[J].   [76]  MUKHOPADHYAY S, SHIMONI R, LIBERMAN I, et al. Assembly
                 Chemistry-A European Journal, 2011, 17(24): 6643-6651.   of a metal-organic framework (MOF) membrane on a solid
            [58]  KOUTSIANOS A, KAZIMIERSKA E, BARRON A R, et al. A new   electrocatalyst: Introducing molecular-level control over heterogeneous
                 approach to enhancing the CO 2 capture performance of defective   CO 2 reduction[J]. Angewandte Chemie International Edition, 2021,
                 UiO-66  via post-synthetic defect exchange[J]. Dalton Transactions,   60(24): 13423-13429.
                 2019, 48(10): 3349-3359.                      [77]  NASRABADI M, GHASEMZADEH  M A, MONFARED M R Z.
            [59]  WANG J, ZHANG S, HAN Y, et al. UiO-66 (Zr/Ti) for catalytic PET   The preparation and characterization of UiO-66 metal-organic
                 polycondensation[J]. Molecular Catalysis, 2022, 532: 112741.   frameworks for the delivery of the drug ciprofloxacin and an
            [60]  SUN D,  LIU W,  QIU M,  et al.  Introduction of a mediator for   evaluation  of their antibacterial activities[J]. New Journal of
                 enhancing photocatalytic performance  via  post-synthetic metal   Chemistry, 2019, 43(40): 16033-16040.
                 exchange in metal-organic frameworks(MOFs)[J]. Chemical   [78]  ROJAS S, COLINET I,  CUNHA D,  et al. Toward understanding
                 Communications, 2015, 51(11): 2056-2059.          drug incorporation  and delivery from biocompatible metal-organic
            [61]  LOOSEN A, SIMMS C, SMOLDERS S, et al. Bimetallic Ce/Zr   frameworks in view of cutaneous administration[J]. ACS Omega,
                 UiO-66 metal-organic framework nanostructures as peptidase and   2018, 3(3): 2994-3003.
                 oxidase nanozymes[J]. ACS  Applied Nano Materials, 2021, 4(6):   [79]  BOROUSHAKI T, DEKAMIN M G, HASHEMIANZADEH S M, et
                 5748-5757.                                        al. A molecular dynamic simulation study of anticancer agents and
            [62]  NIU Z, GUAN Q, SHI Y, et al. A lithium-modified zirconium-based   UiO-66 as a carrier in drug delivery systems[J]. Journal of Molecular
                 metal organic framework (UiO-66) for efficient CO 2 adsorption[J].   Graphics and Modelling, 2022, 113: 108147.
                 New Journal of Chemistry, 2018, 42(24): 19764-19770.   [80]  ZHENG J, LÖBBERT L, CHHEDA S, et al. Metal-organic framework
            [63]  CAI X X, XU Q H, TU G M, et al. Synergistic catalysis of ruthenium   supported  single-site nickel catalysts for butene dimerization[J].
                 nanoparticles and polyoxometalate integrated within single UiO-66   Journal of Catalysis, 2022, 413: 176-183.
                 microcrystals for boosting the efficiency of  methyl levulinate to   [81]  DUMA Z  G, DYOSIBA X, MOMA J,  et al. Thermocatalytic
                 γ-valerolactone[J]. Frontiers in Chemistry, 2019, 7: 42.   hydrogenation of CO 2 to methanol using Cu-ZnO bimetallic catalysts
            [64]  HAN Y,  LIU M,  LI K,  et al. In situ synthesis of titanium doped   supported on metal-organic frameworks[J]. Catalysts, 2022, 12(4): 401.
                 hybrid metal-organic framework UiO-66 with enhanced adsorption   [82]  PAN Y, JIANG S S, XIONG W, et al. Supported CuO catalysts on
                 capacity for organic dyes[J]. Inorganic Chemistry Frontiers, 2017,   metal-organic framework (Cu-UiO-66) for efficient catalytic wet
                 4(11): 1870-1880.                                 peroxide oxidation of 4-chlorophenol in wastewater[J]. Microporous
            [65]  TAN L, LI Y, LV Q, et al. Development of soluble UiO-66 to   and Mesoporous Materials, 2020, 291: 109703.
                 improve photocatalytic CO 2 reduction[J]. Catalysis Today, 2023, 410:   [83]  HAN Y, YU J, GUO Q, et al. Synthesis of C 2 oxygenates from syngas
                 282-288.                                          over UiO-66  supported Rh-Mn catalysts: The effect of functional
            [66]  SHI L, ZOU X, WANG T, et al. Sunlight photocatalytic degradation   groups[J]. New Journal of Chemistry, 2021, 45(2): 696-704.
                 of ofloxacin using UiO-66/wood composite photocatalysts[J]. Chinese   [84]  BAE S, ZAINI N, KAMARUDIN K S N, et al. Rapid solvothermal
                 Chemical Letters, 2022, 33(1): 442-446.           synthesis of microporous UiO-66  particles for carbon  dioxide
            [67]  VO T K, KIM J. Facile synthesis of magnetic framework composite   capture[J]. Korean  Journal of Chemical Engineering, 2018, 35(3):
                 MgFe 2O 4@UiO-66 (Zr) and its applications  in the adsorption-   764-769.
                 photocatalytic degradation of tetracycline[J]. Environmental Science   [85]  MUTYALA S, JONNALAGADDA  M, IBRAHIM S  M. Effect of
                 and Pollution Research, 2021, 28(48): 68261-68275.   modification of UiO-66 for CO 2 adsorption and separation of
            [68]  QI X M,  WU Q,  WANG X, et al.  Design of UiO-66@BiOIO 3   CO 2/CH 4[J]. Journal of Molecular Structure, 2021, 1227: 129506.
                 heterostructural composites with remarkable boosted photocatalytic   [86]  LE V N, VO  T  K, YOO K S, et  al.  Enhanced CO 2 adsorption
                 activities in removing diverse industrial pollutants[J]. Journal of   performance on amino-defective UiO-66 with 4-amino benzoic acid
                 Physics and Chemistry of Solids, 2021, 151: 109903.   as the defective linker[J]. Separation  and Purification  Technology,
            [69]  ZHANG R, SONG X, LIU Y, et al.  Monomolecular VB 2-doped   2021, 274: 119079.
                 MOFs for photocatalytic oxidation with enhanced stability, recyclability   [87]  WALTON I, CHEN C, RIMSZA J M, et al. Enhanced sulfur dioxide
                 and selectivity[J]. Journal of Materials Chemistry A, 2019, 7(47):   adsorption  in UiO-66 through crystal engineering and  chalcogen
                 26934-26943.                                      bonding[J]. Crystal Growth & Design, 2020, 20(9): 6139-6146.
            [70]  LI Y, MENG X,  LUO R,  et al.  Aluminum/Tin-doped UiO-66 as   [88]  VO T K, KIM J, VU T H, et al. Creating Cu(Ⅰ)-decorated defective
                 Lewis  acid  catalysts for enhanced glucose isomerization to   UiO-66  (Zr)  framework with high  CO adsorption capacity and
                 fructose[J]. Applied Catalysis A: General, 2022, 632: 118501.   selectivity[J]. Separation and Purification Technology, 2022, 283:
            [71]  TIMOFEEVA M N, PANCHENKO V N, LUKOYANOV I A, et al.   120237.
                 Zirconium-containing metal organic frameworks as solid acid   [89]  QIANG Z, WEN Y, LIANG J, et al. Synthesis and hydrogen storage
                 catalysts for the N-formylation of  aniline with formic acid[J].   studies of metalorganic framework UiO-66[J]. International Journal
                 Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 355-369.   of Hydrogen Energy, 2013, 38(29): 13104-13109.
            [72]  RAPEYKO A,  RODENAS M, LLABRÉS I XAMENA F X.   [90]  ABID H R, TIAN H, ANG H M, et al. Nanosize Zr-metal organic
                 Zr-Containing UiO-66 metal-organic frameworks as highly selective   framework (UiO-66) for hydrogen and carbon dioxide storage[J].
                 heterogeneous acid catalysts for the direct ketalization of levulinic   Chemical Engineering Journal, 2012, 187: 415-420.
                 acid[J]. Advanced Sustainable Systems, 2022, 6(3): 2100451.                 (下转第 1238 页)
   46   47   48   49   50   51   52   53   54   55   56