Page 50 - 《精细化工》2023年第6期
P. 50
·1200· 精细化工 FINE CHEMICALS 第 40 卷
[16] ZHOU C (周川), YUAN B (原博), ZHANG S X (张守鑫), et al. Toward green synthesis of metal-organic frameworks[J]. Materials
Synthesis of zirconium based metal organic framework UiO-66 and Today, 2021, 46: 109-124.
its application in chemical protection[J]. Chemical Industry and [36] UŽAREVIĆ K, WANG T C, MOON S Y, et al. Mechanochemical
Engineering Progress (化工进展), 2019, 38(10): 4614-4622. and solvent-free assembly of zirconium-based metal-organic
[17] VKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium frameworks[J]. Chemical Communications, 2016, 52(10): 2133-2136.
inorganic building brick forming metal organic frameworks with [37] FIDELLI A M, KATSENIS A D, KOTIDIS P, et al. Enhanced Cr(Ⅵ)
exceptional stability[J]. Journal of the American Chemical Society, sorption capacity of the mechanochemically synthesized defective
2008, 130(42): 13850-13851. UiO-66 and UiO-66-NH 2[J]. Journal of Coordination Chemistry,
[18] RAMSAHYE N A, GAO J, JOBIC H, et al. Adsorption and diffusion 2021, 74(17/18/19/20): 2835-2849.
of light hydrocatbons in UiO-66 (Zr): A combination of experimental [38] CLIFFE M J, MOTTILLO C, STEIN R S, et al. Accelerated aging: A
and modeling tools[J]. J Phys Chem C, 2014, 118(47): 27470-27482. low energy, solvent-free alternative to solvothermal and mechanochemical
[19] PISCOPO G, POLYZOIDIS A, SCHWARZER M, et al. Stability of synthesis of metal-organic materials[J]. Chemical Science, 2012,
UiO-66 under acidic treatment: Opportunities and limitations for 3(8): 2495-2500.
post-synthetic modifications[J]. Microporous Mesoporous Materials, [39] HU P, ZHAO Z, SUN X, et al. Construction of crystal defect sites in
2015, 208: 30-35. N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy
[20] DU F (杜峰), LI L (李鹂). Preparation of UiO-66 (Zr) series MOFs for highly selective adsorption of cationic dyes[J]. Chemical Engineering
catalytic materials and their application in the synthesis of ethyl Journal, 2019, 356: 329-340.
lactate[J]. Chemical Industry and Engineering Progress (化工进展), [40] LI M, DINCĂ M. On the mechanism of MOF-5 formation under
2015, 34(11): 3938-3943,3950. cathodic bias[J]. Chemistry of Materials, 2015, 27(9): 3203-3206.
[21] HAN Y T (韩易潼), LIU M (刘民), LI K Y (李克艳), et al. Synthesis [41] ZHANG T, WEI J Z, SUN X J, et al. Rapid synthesis of UiO-66 by
and application of highly stable organometallic framework UiO-66 means of electrochemical cathode method with electrochemical
[J]. Chinese Journal of Applied Chemistry (应用化学), 2016, 33(4): detection of 2,4,6-TCP[J]. Inorganic Chemistry Communications,
367-378. 2020, 111: 107671.
[22] ZHANG J (张静), LIU J (刘洁). Synthesis and adsorption application [42] WEI J Z, GONG F X, SUN X J, et al. Rapid and low-cost
of UiO series metal-organic framework[J]. Journal of Functional electrochemical synthesis of UiO-66-NH 2 with enhanced fluorescence
Materials (功能材料), 2022, 53(10): 10087-10094. detection performance[J]. Inorganic Chemistry, 2019, 58(10): 6742-6747.
[23] DENG Z, PENG X, ZENG Y J. Ferrocenecarboxylic acid: A functional [43] LU N, ZHOU F, JIA H, et al. Dry-gel conversion synthesis of
modulator for UiO-66 synthesis and incorporation of Pd nanoparticles Zr-based metal-organic frameworks[J]. Industrial & Engineering
[J]. CrystEngComm, 2019, 21(11): 1772-1779. Chemistry Research, 2017, 56(48): 14155-14163.
[24] HAN Y, LIU M, LI K, et al. Cu 2O mediated synthesis of metal- [44] GÖKPINAR S, DIMENT T, JANIAK C. Environmentally benign
organic framework UiO-66 in nanometer scale[J]. Crystal Growth & dry-gel conversions of Zr-based UiO metal-organic frameworks with
Design, 2017, 17(2): 685-692. high yield and the possibility of solvent re-use[J]. Dalton Transactions,
[25] LOZANO L A, IGLESIAS C M, FAROLDI B, et al. Efficient 2017, 46(30): 9895-9900.
solvothermal synthesis of highly porous UiO-66 nanocrystals in [45] TANNERT N, GÖKPINAR S, HASTÜRK E, et al. Microwave-
dimethylformamide-free media[J]. Journal of Materials Science, assisted dry-gel conversion-A new sustainable route for the rapid
2018, 53(3): 1862-1873. synthesis of metal-organic frameworks with solvent re-use[J]. Dalton
[26] LIU N, SHI L, MENG X. Tuning the adsorption properties of Transactions, 2018, 47(29): 9850-9860.
UiO-66 via acetic acid modulation[J]. Journal of Chemical Sciences, [46] TAI S, ZHANG W, ZHANG J, et al. Facile preparation of UiO-66
2019, 131(6): 1-7. nanoparticles with tunable sizes in a continuous flow microreactor
[27] CHEN X, LI Y, FU Q, et al. An efficient modulated synthesis of and its application in drug delivery[J]. Microporous and Mesoporous
zirconium metal-organic framework UiO-66[J]. RSC Advances, 2022, Materials, 2016, 220: 148-154.
12(10): 6083-6092. [47] POLYZOIDIS A, REICHLE S, SCHWARZER M, et al. Improved
[28] VERMOORTELE F, BUEKEN B, LEBARS G, et al. Synthesis continuous synthesis of UiO-66 enabling outstanding production
modulation as a tool to increase the catalytic activity of metal- rates[J]. Reaction Chemistry & Engineering, 2021, 6(4): 679-684.
organic frameworks: The unique case of UiO-66(Zr)[J]. Journal of [48] RUBIO-MARTINEZ M, BATTEN M P, POLYZOS A, et al.
the American Chemical Society, 2013, 135(31): 11465-11468. Versatile, high quality and scalable continuous flow production of
[29] LI Y, ZHAO Y, ZHANG R, et al. PVP-assisted synthesis of metal-organic frameworks[J]. Scientific Reports, 2014, 4(1): 1-5.
monodisperse UiO-66 crystals with tunable sizes[J]. Inorganic Chemistry [49] TADDEI M, STEITZ D A, VAN BOKHOVEN J A, et al.
Communications, 2017, 82: 68-71. Continuous-flow microwave synthesis of metal-organic frameworks:
[30] MARSHALL R J, HOBDAY C L, MURPHIE C F, et al. Amino acids A highly efficient method for large-scale production[J]. Chemistry-A
as highly efficient modulators for single crystals of zirconium and European Journal, 2016, 22(10): 3245-3249.
hafnium metal-organic frameworks[J]. Journal of Materials Chemistry [50] VO T K, LE V N, YOO K S, et al. Facile synthesis of UiO-66 (Zr)
A, 2016, 4(18): 6955-6963. using a microwave-assisted continuous tubular reactor and its
[31] TADDEI M, DAU P V, COHEN S M, et al. Efficient microwave application for toluene adsorption[J]. Crystal Growth & Design,
assisted synthesis of metal-organic framework UiO-66: Optimization 2019, 19(9): 4949-4956.
and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026. [51] MITSUKA Y, NAGASHIMA K, KOBAYASHI H, et al. A
[32] GE J, LIU L, SHEN Y. Facile synthesis of amine-functionalized seed-mediated spray-drying method for facile syntheses of Zr-MOF
UiO-66 by microwave method and application for methylene blue and a pillared-layer-type MOF[J]. Chemistry Letters, 2016, 45(11):
adsorption[J]. Journal of Porous Materials, 2017, 24: 647-655. 1313-1315.
[33] LI Y, LIU Y, GAO W, et al. Microwave-assisted synthesis of UiO-66 [52] KADHOM M, AL-FURAIJI M, SALIH S, et al. A review on UiO-66
and its adsorption performance towards dyes[J]. CrystEngComm, applications in membrane-based water treatment processes[J].
2014, 16(30): 7037-7042. Journal of Water Process Engineering, 2023, 51: 103402.
[34] DANG Y T, HOANG H T, DONG H C, et al. Microwave-assisted [53] WINARTA J, SHAN B, MCINTYRE S M, et al. A decade of UiO-66
synthesis of nano Hf- and Zr-based metal-organic frameworks for research: A historic review of dynamic structure, synthesis
enhancement of curcumin adsorption[J]. Microporous and Mesoporous mechanisms, and characterization techniques of an archetypal
Materials, 2020, 298: 110064. metal-organic framework[J]. Crystal Growth & Design, 2019, 20(2):
[35] GŁOWNIAK S, SZCZĘŚNIAK B, CHOMA J, et al. Mechanochemistry: 1347-1362.