Page 50 - 《精细化工》2023年第6期
P. 50

·1200·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [16]  ZHOU C (周川),  YUAN B (原博), ZHANG  S X  (张守鑫), et al.   Toward green synthesis of metal-organic frameworks[J]. Materials
                 Synthesis of zirconium based metal organic framework UiO-66 and   Today, 2021, 46: 109-124.
                 its application in  chemical protection[J]. Chemical Industry and   [36] UŽAREVIĆ K, WANG T C, MOON S Y, et al. Mechanochemical
                 Engineering Progress (化工进展), 2019, 38(10): 4614-4622.   and solvent-free assembly of zirconium-based metal-organic
            [17]  VKA J H, JAKOBSEN S, OLSBYE U,  et al.  A new zirconium   frameworks[J]. Chemical Communications, 2016, 52(10): 2133-2136.
                 inorganic building brick forming metal organic frameworks with   [37]  FIDELLI A M, KATSENIS A D, KOTIDIS P, et al. Enhanced Cr(Ⅵ)
                 exceptional stability[J]. Journal of the American Chemical Society,   sorption capacity of the mechanochemically synthesized defective
                 2008, 130(42): 13850-13851.                       UiO-66 and UiO-66-NH 2[J]. Journal of Coordination Chemistry,
            [18]  RAMSAHYE N A, GAO J, JOBIC H, et al. Adsorption and diffusion   2021, 74(17/18/19/20): 2835-2849.
                 of light hydrocatbons in UiO-66 (Zr): A combination of experimental   [38]  CLIFFE M J, MOTTILLO C, STEIN R S, et al. Accelerated aging: A
                 and modeling tools[J]. J Phys Chem C, 2014, 118(47): 27470-27482.   low energy, solvent-free alternative to solvothermal and mechanochemical
            [19]  PISCOPO G, POLYZOIDIS A, SCHWARZER M, et al. Stability of   synthesis of metal-organic materials[J]. Chemical Science, 2012,
                 UiO-66  under acidic treatment: Opportunities and limitations for   3(8): 2495-2500.
                 post-synthetic modifications[J]. Microporous Mesoporous Materials,   [39]  HU P, ZHAO Z, SUN X, et al. Construction of crystal defect sites in
                 2015, 208: 30-35.                                 N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy
            [20]  DU F (杜峰), LI L (李鹂). Preparation of UiO-66 (Zr) series MOFs   for highly selective adsorption of cationic dyes[J]. Chemical Engineering
                 catalytic  materials and their application in the synthesis of ethyl   Journal, 2019, 356: 329-340.
                 lactate[J]. Chemical Industry and Engineering Progress (化工进展),   [40]  LI M, DINCĂ M.  On the mechanism of MOF-5 formation  under
                 2015, 34(11): 3938-3943,3950.                     cathodic bias[J]. Chemistry of Materials, 2015, 27(9): 3203-3206.
            [21]  HAN Y T (韩易潼), LIU M (刘民), LI K Y (李克艳), et al. Synthesis   [41]  ZHANG T, WEI J Z, SUN X J, et al. Rapid synthesis of UiO-66 by
                 and application of  highly stable organometallic framework UiO-66   means of electrochemical cathode method with electrochemical
                 [J]. Chinese Journal of Applied Chemistry (应用化学), 2016, 33(4):   detection of 2,4,6-TCP[J]. Inorganic  Chemistry Communications,
                 367-378.                                          2020, 111: 107671.
            [22]  ZHANG J (张静), LIU J (刘洁). Synthesis and adsorption application   [42]  WEI J Z, GONG F X, SUN X J,  et al.  Rapid and low-cost
                 of UiO series metal-organic framework[J]. Journal  of  Functional   electrochemical synthesis of UiO-66-NH 2 with enhanced fluorescence
                 Materials (功能材料), 2022, 53(10): 10087-10094.      detection performance[J]. Inorganic Chemistry, 2019, 58(10): 6742-6747.
            [23]  DENG Z, PENG X, ZENG Y J. Ferrocenecarboxylic acid: A functional   [43]  LU N,  ZHOU F,  JIA H, et al. Dry-gel conversion synthesis  of
                 modulator for UiO-66 synthesis and incorporation of Pd nanoparticles   Zr-based  metal-organic frameworks[J]. Industrial & Engineering
                 [J]. CrystEngComm, 2019, 21(11): 1772-1779.       Chemistry Research, 2017, 56(48): 14155-14163.
            [24]  HAN Y, LIU M,  LI K,  et al. Cu 2O  mediated synthesis of metal-   [44]  GÖKPINAR S, DIMENT T, JANIAK C. Environmentally benign
                 organic framework UiO-66 in nanometer scale[J]. Crystal Growth &   dry-gel conversions of Zr-based UiO metal-organic frameworks with
                 Design, 2017, 17(2): 685-692.                     high yield and the possibility of solvent re-use[J]. Dalton Transactions,
            [25]  LOZANO L A, IGLESIAS C M, FAROLDI B, et al.  Efficient   2017, 46(30): 9895-9900.
                 solvothermal synthesis of highly porous UiO-66 nanocrystals in   [45]  TANNERT N,  GÖKPINAR S, HASTÜRK E, et  al.  Microwave-
                 dimethylformamide-free  media[J]. Journal of Materials Science,   assisted dry-gel conversion-A new sustainable route for the rapid
                 2018, 53(3): 1862-1873.                           synthesis of metal-organic frameworks with solvent re-use[J]. Dalton
            [26]  LIU N, SHI L,  MENG X. Tuning the adsorption properties  of   Transactions, 2018, 47(29): 9850-9860.
                 UiO-66 via acetic acid modulation[J]. Journal of Chemical Sciences,   [46]  TAI S, ZHANG W, ZHANG J, et al. Facile preparation of UiO-66
                 2019, 131(6): 1-7.                                nanoparticles with tunable sizes in a  continuous flow microreactor
            [27]  CHEN X, LI Y, FU Q,  et al.  An efficient modulated synthesis  of   and its application in drug delivery[J]. Microporous and Mesoporous
                 zirconium metal-organic framework UiO-66[J]. RSC Advances, 2022,   Materials, 2016, 220: 148-154.
                 12(10): 6083-6092.                            [47]  POLYZOIDIS A,  REICHLE S, SCHWARZER M,  et al.  Improved
            [28]  VERMOORTELE  F, BUEKEN  B, LEBARS G, et al. Synthesis   continuous synthesis of UiO-66 enabling outstanding  production
                 modulation as a tool to increase the catalytic activity of metal-   rates[J]. Reaction Chemistry & Engineering, 2021, 6(4): 679-684.
                 organic frameworks:  The unique case  of UiO-66(Zr)[J]. Journal of   [48]  RUBIO-MARTINEZ M, BATTEN  M P, POLYZOS A, et al.
                 the American Chemical Society, 2013, 135(31): 11465-11468.   Versatile, high quality and scalable continuous flow production of
            [29]  LI  Y, ZHAO  Y, ZHANG R,  et al.  PVP-assisted synthesis of   metal-organic frameworks[J]. Scientific Reports, 2014, 4(1): 1-5.
                 monodisperse UiO-66 crystals with tunable sizes[J]. Inorganic Chemistry   [49]  TADDEI M, STEITZ D A, VAN BOKHOVEN J  A,  et al.
                 Communications, 2017, 82: 68-71.                  Continuous-flow microwave synthesis of metal-organic frameworks:
            [30]  MARSHALL R J, HOBDAY C L, MURPHIE C F, et al. Amino acids   A highly efficient method for large-scale production[J]. Chemistry-A
                 as highly efficient modulators for single crystals of zirconium and   European Journal, 2016, 22(10): 3245-3249.
                 hafnium metal-organic frameworks[J]. Journal of Materials Chemistry   [50]  VO T K, LE V N, YOO K S, et al. Facile synthesis of UiO-66 (Zr)
                 A, 2016, 4(18): 6955-6963.                        using a microwave-assisted continuous tubular  reactor and its
            [31]  TADDEI M,  DAU P V, COHEN S  M, et al.  Efficient microwave   application for toluene adsorption[J]. Crystal Growth  & Design,
                 assisted synthesis of metal-organic framework UiO-66: Optimization   2019, 19(9): 4949-4956.
                 and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026.   [51]  MITSUKA  Y, NAGASHIMA K,  KOBAYASHI H, et al. A
            [32]  GE J, LIU L, SHEN Y. Facile synthesis  of amine-functionalized   seed-mediated spray-drying method for facile syntheses of Zr-MOF
                 UiO-66 by microwave  method and application for methylene blue   and a pillared-layer-type MOF[J].  Chemistry Letters, 2016, 45(11):
                 adsorption[J]. Journal of Porous Materials, 2017, 24: 647-655.   1313-1315.
            [33]  LI Y, LIU Y, GAO W, et al. Microwave-assisted synthesis of UiO-66   [52]  KADHOM M, AL-FURAIJI M, SALIH S, et al. A review on UiO-66
                 and its adsorption performance towards dyes[J]. CrystEngComm,   applications in membrane-based water treatment processes[J].
                 2014, 16(30): 7037-7042.                          Journal of Water Process Engineering, 2023, 51: 103402.
            [34]  DANG Y T, HOANG H T, DONG H C, et al. Microwave-assisted   [53]  WINARTA J, SHAN B, MCINTYRE S M, et al. A decade of UiO-66
                 synthesis of nano  Hf- and Zr-based  metal-organic frameworks for   research: A historic review of dynamic structure, synthesis
                 enhancement of curcumin adsorption[J]. Microporous and Mesoporous   mechanisms, and characterization techniques of an archetypal
                 Materials, 2020, 298: 110064.                     metal-organic framework[J]. Crystal Growth & Design, 2019, 20(2):
            [35] GŁOWNIAK S, SZCZĘŚNIAK B, CHOMA J, et al. Mechanochemistry:   1347-1362.
   45   46   47   48   49   50   51   52   53   54   55