Page 61 - 《精细化工》2023年第6期
P. 61

第 6 期                   周添红,等:  外场辅助光催化机理及降解有机污染物研究进展                                   ·1211·


            [2]   WANG Q H (王庆宏), JIANG C X (姜晨旭), WANG X (王鑫), et   1597-1603.
                 al. An overview of natural mineral catalytic oxidation of refractory   [20]  LIU J (刘静), YANG L B (杨璐冰), LI C (李晨), et al. Preparation of
                 organic contaminants  in wastewater[J]. Chemical Industry and   ML-WO 3/TiO 2 heterojunction and its  photocatalytic degradation of
                 Engineering Progress (化工进展), 2023, 42(1): 417-434.     Rhodamine B[J]. Fine Chemicals  ( 精细化工 ), 2022, 39(12):
            [3]   WANG J H (王佳豪), TIAN T (田湉), LI J C (李家成),  et al.   2456-2466.
                 Research progress  on removal of antibiotic resistant bacteria and   [21]  YIN Q Y (尹棋亚), YIN S H (殷素华), LI D R (李道荣),  et al.
                 genes in water by photochemical AOPs[J]. Fine Chemicals (精细化  Progress of external field assisted preparation and photocatalysis of
                 工), 2021, 38(5): 889-897.                         nano-material[J]. Chemical Industry and Engineering Progress (化工
            [4]   LI N (李宁), ZHANG W (张伟), LI G X (李贵贤), et al. Research   进展), 2008, 27(2): 202-205.
                 progress of  TiO 2  photocatalysts[J]. Fine Chemicals (精细化工),   [22]  LI J, PEI Q, WANG R Y, et al. Enhanced photocatalytic performance
                 2021, 38(11): 2181-2188, 2258.                    through magnetic field boosting carrier transport[J]. ACS Nano,
            [5]   LI D  L (李德丽), TANG Z J (唐忠家), TIAN  L J (田丽君), et al.   2018, 12(4): 3351-3359.
                 Photocatalytic  degradation  of  Rhodamine  B  by  [23]  LI X B, WANG W W, DONG F, et al. Recent advances in noncontact
                 palygorskite/Al-doped CdS composites[J]. Fine Chemicals (精细化  external-field-assisted photocatalysis: From fundamentals to
                 工), 2021, 38(12): 2485-2491.                      applications[J]. ACS Catalysis, 2021, 11(8): 4739-4769.
            [6]   ADAMU H, DUBEY P, ANDERSON J A. Probing the role of   [24]  HU C, TU S C, TIAN N, et al. Photocatalysis enhanced by external
                 thermally reduced graphene oxide in enhancing performance of TiO 2   fields[J].  Angewandte Chemie International Edition, 2021, 60(30):
                 in photocatalytic phenol  removal from  aqueous environments[J].   16309-16328.
                 Chemical Engineering Journal, 2016, 284: 380-388.     [25]  WANG X P, GAO P C,  YAN T,  et al. Ultrasensitive
            [7]   WANG Z (王震),  ZHENG X H (郑晓环), YUAN Y (袁翼),  et al.   photoelectrochemical immunosensor for insulin detection based on
                                                                   dual inhibition effect of CuS-SiO 2 composite on CdS  sensitized
                 Progress of photocatalytic oxidation for  the removal of natural
                                                                   C-TiO 2[J]. Sensors and Actuators B: Chemical, 2018, 258: 1-9.
                 organic matter from water[J/OL]. Industrial Water Treatment (工业水
                                                               [26]  LI S P (李善鹏), LIU C  L (刘春雷), LIU G G (刘国光),  et al.
                 处理), 2022. [2022-08-26]. DOI: 10.19965/j.cnki.iwt.2022-0612.
                                                                   Mechanism study of photoelectrocatalytic efficient reduction of
            [8]   ZHANG  Z F (张转芳), TANG L (唐林), SUN L (孙立),  et al.
                 Preparation of CuS/GO nanocomposite and its photocatalytic   hexavalent chromium and synchronous oxidation of p-chlorophenol
                 degradation activity[J]. Fine  Chemicals (精细化工), 2019, 36(2):   by Pd-doped TiO 2 nanowire arrays@MoS 2 electrode[J]. Acta
                 237-242.                                          Scientiae Circumstantiae (环境科学学报), 2022, 42(11): 34-46.
            [9]   ZHENG Y J (郑永杰), LU Z R (卢致瑞), TIAN J Z (田景芝), et al.   [27]  XIAO Y T, TIAN G H, CHEN Y J, et al. Exceptional visible-light
                 Preparation of TiO 2/MOFs and current status of pollutant   photoelectrocatalytic activity of In 2O 3/In 2S 3/CdS ternary stereoscopic
                 degradation[J]. Fine Chemicals (精细化工), 2021, 38(11): 2208-   porous heterostructure film for  the  degradation  of  persistent
                                                                   4-fluoro-3-methylphenol[J]. Applied Catalysis B:  Environmental,
                 2218.
                                                                   2018, 225: 477-486.
            [10]  SAFIZADE B, MASOUDPANAH S M, HASHEMINIASARI M, et
                                                               [28]  PENG B B (彭兵兵), HUAN K W (宦克为), XIAO N (肖楠), et al.
                 al. Photocatalytic activity of BiFeO 3/ZnFe 2O 4 nanocomposites under
                                                                   Preparation  of  WO 3/ZnWO 4  composite  film  and  its
                 visible light irradiation[J]. RSC Advances, 2018, 8(13): 6988-6995.     photoelectrochemical performance[J].  Fine Chemicals (精细化工),
            [11]  LI X R, CHEN Y, TAO Y,  et al. Challenges of photocatalysis and   2021, 38(11): 2299-2304, 2311.
                 their coping strategies[J]. Chem Catalysis, 2022, 2(6): 1315-1345.     [29]  MA X M (马晓明), XIN S S (信帅帅), ZHANG C L (张春蕾), et al.
            [12]  WANG  H J, LI X, ZHAO X X,  et al. A review on heterogeneous   Preparation of  g-CaN 4/TiO 2 nanotube arrays photoanode for
                 photocatalysis for environmental remediation: From semiconductors   photoelectrocatalytic degradation of  o-chloronitrobenzene[J]. Acta
                 to modification strategies[J]. Chinese Journal of Catalysis, 2022,   Scientiae Circumstantiae (环境科学学报), 2022, 42(8): 166-178.
                 43(2): 178-214.
                                                               [30]  WANG J, JIANG L X, LIU F Y, et al. Enhanced photoelectrochemical
            [13]  YU J  G,  WANG S H, LOW J X,  et al. Enhanced photocatalytic
                                                                   degradation  of tetracycline hydrochloride with FeOOH and Au
                 performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the   nanoparticles decorated WO 3[J]. Chemical Engineering Journal,
                 decomposition of formaldehyde in air[J]. Physical Chemistry   2021, 407: 127195.
                 Chemical Physics, 2013, 15(39): 16883-16890.     [31]  JIANG Z P (蒋展鹏), WANG H Y (王海燕), YANG H W (杨宏伟).
            [14]  XU Q L, ZHANG L Y, CHENG B, et al. S-Scheme heterojunction   Progress in electrically assisted photocatalysis[J]. Progress in
                 photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.     Chemistry (化学进展), 2005, 17(4): 622-630.
            [15]  REMYA K P, PRABHU  D, JOSEYPHUS R J,  et al. Tailoring  the   [32]  PAN H H, SUN M H, WANG X G, et al. A novel electric-assisted
                 morphology and size of perovskite BiFeO 3 nanostructures for   photocatalytic technique using self-doped TiO 2 nanotube films[J].
                 enhanced magnetic and electrical properties[J]. Materials & Design,   Applied Catalysis B: Environmental, 2022, 307: 121174.
                 2020, 192: 108694.                            [33]  ZHAO Y, HUANG Z D, CHANG W K, et al. Microwave-assisted
            [16]  LI M Y (李明月), LI H P (李会鹏), ZHAO H (赵华),  et al.   solvothermal synthesis of hierarchical TiO 2 microspheres for efficient
                 Preparation and photocatalytic properties  of  Fe-doped Bi 12TiO 20   electro-field-assisted-photocatalytic removal of tributyltin in tannery
                 photocatalytic catalysts[J]. Fine Chemicals ( 精细化工 ), 2022,   wastewater[J]. Chemosphere, 2017, 179: 75-83.
                 39(12): 2514-2520.                            [34]  XUE X  Y, ZANG  W L, DENG P,  et al. Piezo-potential  enhanced
            [17]  ZHANG Y  Q (张仰全), LI L F (李龙飞), ZHOU F (周峰),  et al.   photocatalytic degradation  of organic dye using ZnO nanowires[J].
                 Zr-doped g-C 3N 4 photocatalytic degradation of organic pollutants[J].   Nano Energy, 2015, 13: 414-422.
                 Fine Chemicals (精细化工), 2022, 39(10): 2112-2121.     [35]  YU X, HAN  X, ZHAO  Z H,  et al. Hierarchical TiO 2
            [18]  YANG J H, LUO X G. Ag-doped TiO 2 immobilized cellulose-derived   nanowire/graphite fiber photoelectrocatalysis setup powered by a
                 carbon beads: One-pot preparation, photocatalytic degradation   wind-driven nanogenerator: A highly efficient photoelectrocatalytic
                 performance  and mechanism of ceftriaxone sodium[J]. Applied   device entirely based on  renewable energy[J]. Nano Energy, 2015,
                 Surface Science, 2021, 542: 148724.               11: 19-27.
            [19]  LI Y (李酽), SONG S (宋双), SHAN  L X (单林曦),  et al.   [36]  SU Y J, YANG Y, ZHANG H L, et al. Enhanced photodegradation of
                 Sonochemical preparation and  photocatalytic properties of   Methyl Orange with TiO 2 nanoparticles using a triboelectric
                 Au-modified nano ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8):   nanogenerator[J]. Nanotechnology, 2013, 24(29): 295401.
   56   57   58   59   60   61   62   63   64   65   66