Page 61 - 《精细化工》2023年第6期
P. 61
第 6 期 周添红,等: 外场辅助光催化机理及降解有机污染物研究进展 ·1211·
[2] WANG Q H (王庆宏), JIANG C X (姜晨旭), WANG X (王鑫), et 1597-1603.
al. An overview of natural mineral catalytic oxidation of refractory [20] LIU J (刘静), YANG L B (杨璐冰), LI C (李晨), et al. Preparation of
organic contaminants in wastewater[J]. Chemical Industry and ML-WO 3/TiO 2 heterojunction and its photocatalytic degradation of
Engineering Progress (化工进展), 2023, 42(1): 417-434. Rhodamine B[J]. Fine Chemicals ( 精细化工 ), 2022, 39(12):
[3] WANG J H (王佳豪), TIAN T (田湉), LI J C (李家成), et al. 2456-2466.
Research progress on removal of antibiotic resistant bacteria and [21] YIN Q Y (尹棋亚), YIN S H (殷素华), LI D R (李道荣), et al.
genes in water by photochemical AOPs[J]. Fine Chemicals (精细化 Progress of external field assisted preparation and photocatalysis of
工), 2021, 38(5): 889-897. nano-material[J]. Chemical Industry and Engineering Progress (化工
[4] LI N (李宁), ZHANG W (张伟), LI G X (李贵贤), et al. Research 进展), 2008, 27(2): 202-205.
progress of TiO 2 photocatalysts[J]. Fine Chemicals (精细化工), [22] LI J, PEI Q, WANG R Y, et al. Enhanced photocatalytic performance
2021, 38(11): 2181-2188, 2258. through magnetic field boosting carrier transport[J]. ACS Nano,
[5] LI D L (李德丽), TANG Z J (唐忠家), TIAN L J (田丽君), et al. 2018, 12(4): 3351-3359.
Photocatalytic degradation of Rhodamine B by [23] LI X B, WANG W W, DONG F, et al. Recent advances in noncontact
palygorskite/Al-doped CdS composites[J]. Fine Chemicals (精细化 external-field-assisted photocatalysis: From fundamentals to
工), 2021, 38(12): 2485-2491. applications[J]. ACS Catalysis, 2021, 11(8): 4739-4769.
[6] ADAMU H, DUBEY P, ANDERSON J A. Probing the role of [24] HU C, TU S C, TIAN N, et al. Photocatalysis enhanced by external
thermally reduced graphene oxide in enhancing performance of TiO 2 fields[J]. Angewandte Chemie International Edition, 2021, 60(30):
in photocatalytic phenol removal from aqueous environments[J]. 16309-16328.
Chemical Engineering Journal, 2016, 284: 380-388. [25] WANG X P, GAO P C, YAN T, et al. Ultrasensitive
[7] WANG Z (王震), ZHENG X H (郑晓环), YUAN Y (袁翼), et al. photoelectrochemical immunosensor for insulin detection based on
dual inhibition effect of CuS-SiO 2 composite on CdS sensitized
Progress of photocatalytic oxidation for the removal of natural
C-TiO 2[J]. Sensors and Actuators B: Chemical, 2018, 258: 1-9.
organic matter from water[J/OL]. Industrial Water Treatment (工业水
[26] LI S P (李善鹏), LIU C L (刘春雷), LIU G G (刘国光), et al.
处理), 2022. [2022-08-26]. DOI: 10.19965/j.cnki.iwt.2022-0612.
Mechanism study of photoelectrocatalytic efficient reduction of
[8] ZHANG Z F (张转芳), TANG L (唐林), SUN L (孙立), et al.
Preparation of CuS/GO nanocomposite and its photocatalytic hexavalent chromium and synchronous oxidation of p-chlorophenol
degradation activity[J]. Fine Chemicals (精细化工), 2019, 36(2): by Pd-doped TiO 2 nanowire arrays@MoS 2 electrode[J]. Acta
237-242. Scientiae Circumstantiae (环境科学学报), 2022, 42(11): 34-46.
[9] ZHENG Y J (郑永杰), LU Z R (卢致瑞), TIAN J Z (田景芝), et al. [27] XIAO Y T, TIAN G H, CHEN Y J, et al. Exceptional visible-light
Preparation of TiO 2/MOFs and current status of pollutant photoelectrocatalytic activity of In 2O 3/In 2S 3/CdS ternary stereoscopic
degradation[J]. Fine Chemicals (精细化工), 2021, 38(11): 2208- porous heterostructure film for the degradation of persistent
4-fluoro-3-methylphenol[J]. Applied Catalysis B: Environmental,
2218.
2018, 225: 477-486.
[10] SAFIZADE B, MASOUDPANAH S M, HASHEMINIASARI M, et
[28] PENG B B (彭兵兵), HUAN K W (宦克为), XIAO N (肖楠), et al.
al. Photocatalytic activity of BiFeO 3/ZnFe 2O 4 nanocomposites under
Preparation of WO 3/ZnWO 4 composite film and its
visible light irradiation[J]. RSC Advances, 2018, 8(13): 6988-6995. photoelectrochemical performance[J]. Fine Chemicals (精细化工),
[11] LI X R, CHEN Y, TAO Y, et al. Challenges of photocatalysis and 2021, 38(11): 2299-2304, 2311.
their coping strategies[J]. Chem Catalysis, 2022, 2(6): 1315-1345. [29] MA X M (马晓明), XIN S S (信帅帅), ZHANG C L (张春蕾), et al.
[12] WANG H J, LI X, ZHAO X X, et al. A review on heterogeneous Preparation of g-CaN 4/TiO 2 nanotube arrays photoanode for
photocatalysis for environmental remediation: From semiconductors photoelectrocatalytic degradation of o-chloronitrobenzene[J]. Acta
to modification strategies[J]. Chinese Journal of Catalysis, 2022, Scientiae Circumstantiae (环境科学学报), 2022, 42(8): 166-178.
43(2): 178-214.
[30] WANG J, JIANG L X, LIU F Y, et al. Enhanced photoelectrochemical
[13] YU J G, WANG S H, LOW J X, et al. Enhanced photocatalytic
degradation of tetracycline hydrochloride with FeOOH and Au
performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the nanoparticles decorated WO 3[J]. Chemical Engineering Journal,
decomposition of formaldehyde in air[J]. Physical Chemistry 2021, 407: 127195.
Chemical Physics, 2013, 15(39): 16883-16890. [31] JIANG Z P (蒋展鹏), WANG H Y (王海燕), YANG H W (杨宏伟).
[14] XU Q L, ZHANG L Y, CHENG B, et al. S-Scheme heterojunction Progress in electrically assisted photocatalysis[J]. Progress in
photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. Chemistry (化学进展), 2005, 17(4): 622-630.
[15] REMYA K P, PRABHU D, JOSEYPHUS R J, et al. Tailoring the [32] PAN H H, SUN M H, WANG X G, et al. A novel electric-assisted
morphology and size of perovskite BiFeO 3 nanostructures for photocatalytic technique using self-doped TiO 2 nanotube films[J].
enhanced magnetic and electrical properties[J]. Materials & Design, Applied Catalysis B: Environmental, 2022, 307: 121174.
2020, 192: 108694. [33] ZHAO Y, HUANG Z D, CHANG W K, et al. Microwave-assisted
[16] LI M Y (李明月), LI H P (李会鹏), ZHAO H (赵华), et al. solvothermal synthesis of hierarchical TiO 2 microspheres for efficient
Preparation and photocatalytic properties of Fe-doped Bi 12TiO 20 electro-field-assisted-photocatalytic removal of tributyltin in tannery
photocatalytic catalysts[J]. Fine Chemicals ( 精细化工 ), 2022, wastewater[J]. Chemosphere, 2017, 179: 75-83.
39(12): 2514-2520. [34] XUE X Y, ZANG W L, DENG P, et al. Piezo-potential enhanced
[17] ZHANG Y Q (张仰全), LI L F (李龙飞), ZHOU F (周峰), et al. photocatalytic degradation of organic dye using ZnO nanowires[J].
Zr-doped g-C 3N 4 photocatalytic degradation of organic pollutants[J]. Nano Energy, 2015, 13: 414-422.
Fine Chemicals (精细化工), 2022, 39(10): 2112-2121. [35] YU X, HAN X, ZHAO Z H, et al. Hierarchical TiO 2
[18] YANG J H, LUO X G. Ag-doped TiO 2 immobilized cellulose-derived nanowire/graphite fiber photoelectrocatalysis setup powered by a
carbon beads: One-pot preparation, photocatalytic degradation wind-driven nanogenerator: A highly efficient photoelectrocatalytic
performance and mechanism of ceftriaxone sodium[J]. Applied device entirely based on renewable energy[J]. Nano Energy, 2015,
Surface Science, 2021, 542: 148724. 11: 19-27.
[19] LI Y (李酽), SONG S (宋双), SHAN L X (单林曦), et al. [36] SU Y J, YANG Y, ZHANG H L, et al. Enhanced photodegradation of
Sonochemical preparation and photocatalytic properties of Methyl Orange with TiO 2 nanoparticles using a triboelectric
Au-modified nano ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8): nanogenerator[J]. Nanotechnology, 2013, 24(29): 295401.