Page 63 - 《精细化工》2023年第6期
P. 63

第 6 期                   周添红,等:  外场辅助光催化机理及降解有机污染物研究进展                                   ·1213·


                 Water & Wastewater (中国给水排水), 1997, 13(6): 28-30.       photoelectrochemical water splitting: The photoelectrodes have
            [72]  FEDOROV K, DINESH  K,  SUN X,  et al. Synergistic effects of   weaker nonradiative recombination of carrier[J]. ACS Catalysis,
                 hybrid advanced oxidation processes (AOPs) based on hydrodynamic   2021, 11(3): 1242-1247.
                 cavitation phenomenon-A review[J]. Chemical Engineering Journal,   [90]  WANG  Y, WANG  S L, WU  Y  B,  et al. A  α-Fe 2O 3/rGO magnetic
                 2022, 432: 134191.                                photocatalyst: Enhanced photocatalytic performance regulated by
            [73]  WANG  B W, SU  H J, ZHANG B.  Hydrodynamic  cavitation as a   magnetic field[J]. Journal of Alloys  and Compounds, 2021, 851:
                 promising route for wastewater treatment-A review[J]. Chemical   156733.
                 Engineering Journal, 2021, 412: 128685.       [91]  ZHAO X L, GAO  W Q, LIU Q L, et al. Enhanced photo-induced
            [74] GĄGOL M, PRZYJAZNY A, BOCZKAJ G.  Wastewater treatment   carrier separation of CdS/MoS 2  via  micro-potential of MO
                 by means of advanced oxidation processes based on cavitation-A   microsheet derived from electromagnetic induction[J]. Chemical
                 review[J]. Chemical Engineering Journal, 2018, 338: 599-627.     Engineering Journal, 2021, 404: 126972.
            [75]  NIE G, HU K S, REN W,  et al. Mechanical agitation accelerated   [92]  GAO W Q, ZHAO X L, CUI C, et al. High-efficiency separation and
                 ultrasonication for wastewater treatment: Sustainable production of   transfer  of  photo-induced charge carrier in graphene/TiO 2  via
                 hydroxyl radicals[J]. Water Research, 2021, 198: 117124.     heterostructure in magnetic field[J]. Journal of Alloys and
            [76]  DAVID B, LHOTE M, FAURE V,  et al. Ultrasonic and   Compounds, 2021, 862: 158283.
                 photochemical degradation  of chlorpropham and 3-chloroaniline in   [93]  ZHENG  H B, CHEN H H, WANG  Y  L,  et al. Fabrication of
                 aqueous solution[J]. Water Research, 1998, 32(8): 2451-2461.     magnetic superstructure NiFe 2O 4@MOF-74 and its derivative for
            [77]  ISARI A A, MEHREGAN M, MEHREGAN  S,  et al.      electrocatalytic hydrogen evolution with AC magnetic field[J]. ACS
                 Sono-photocatalytic degradation of tetracycline and pharmaceutical   Applied Materials & Interfaces, 2020, 12(41): 45987-45996.
                 wastewater using WO 3/CNT heterojunction nanocomposite under US   [94]  LI R, YANG Y, LI R, et al. Experimental and theoretical studies on
                 and visible light irradiations: A novel  hybrid system[J]. Journal of   the effects of magnetic fields on the arrangement of surface spins and
                 Hazardous Materials, 2020, 390: 122050.           the catalytic activity of Pd nanoparticles[J]. ACS Applied Materials
            [78]  BABU S G, KARTHIK P, JOHN M  C,  et al. Synergistic effect of   & Interfaces, 2015, 7(11): 6019-6024.
                 sono-photocatalytic process for the degradation of organic pollutants   [95]  GAO W Q, PENG R, YANG Y Y, et al. Electron spin polarization-
                 using CuO-TiO 2/rGO[J].  Ultrasonics Sonochemistry, 2019, 50:   enhanced photoinduced charge separation in ferromagnetic
                 218-223.                                          ZnFe 2O 4[J]. ACS Energy Letters, 2021, 6(6): 2129-2137.
            [79]  MENG  L, CHANG L Y, HOU J W. Degradation of methyl green   [96]  OKUMURA H, ENDO S, JOONWICHIEN S, et al. Magnetic field
                 from wastewater with ultrasound synergized with Bi 2O 2CO 3   effect on heterogeneous  photocatalysis[J]. Catalysis Today, 2015,
                 catalysis: Kinetics, products, and pathways[J]. Journal of Cleaner   258: 634-647.
                 Production, 2022, 342: 130976.                [97]  LI N, HE M T, LU X K, et al. Enhanced norfloxacin degradation by
            [80]  PAN L, SUN S C, CHEN Y,  et al. Advances in piezo-phototronic   visible-light-driven Mn 3O 4/γ-MnOOH photocatalysis  under weak
                 effect enhanced photocatalysis and photoelectrocatalysis[J]. Advanced   magnetic field[J]. Science of the Total Environment, 2021, 761:
                 Energy Materials, 2020, 10(15): 2000214.          143268.
                                                         2+
            [81]  SU C J, LI R H, LI C L, et al. Piezo-promoted regeneration of Fe    [98]  SERRÀ A, GRAU S, GIMBERT-SURIÑACH C, et al. Magnetically-
                 boosts peroxydisulfate activation by Bi 2Fe 4O 9 nanosheets[J]. Applied   actuated  mesoporous  nanowires for enhanced heterogeneous
                 Catalysis B: Environmental, 2022, 310: 121330.     catalysis[J]. Applied Catalysis B: Environmental, 2017, 217: 81-91.
            [82]  ZHOU X F, SHEN B,  LYUBARTSEV A,  et al. Semiconducting   [99]  SHI L, WANG X Z, HU Y W, et al. Investigation of photocatalytic
                 piezoelectric heterostructures for  piezo- and piezophotocatalysis[J].   activity through  photo-thermal heating enabled  by Fe 3O 4/TiO 2
                 Nano Energy, 2022, 96: 107141.                    composite under magnetic field[J]. Solar Energy, 2020, 196: 505-512.
            [83]  HUANG S  Y (黄仕元), WANG Z Y (王振宇), LI S (李胜), et al.   [100]  LU Y K, REN B Y, CHANG S C, et al. Achieving effective control
                 Research progress in modification of bismuth ferrite photocatalyst[J].   of the photocatalytic performance for CoFe 2O 4/MoS 2 heterojunction
                 Fine Chemicals (精细化工), 2021, 38(1): 17-22.        via exerting external magnetic fields[J]. Materials Letters, 2020, 260:
            [84]  ISMAIL M, WU Z, ZHANG  L H,  et al. High-efficient synergy of   126979.
                 piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial   [101]  MUSHTAQ F,  CHEN X Z,  TORLAKCIK  H,  et al. Enhanced
                 for dye decomposition[J]. Chemosphere, 2019, 228: 212-218.     catalytic degradation of organic pollutants by multi-stimuli activated
            [85]  LAN S Y, YU  C, SUN F,  et al.  Tuning piezoelectric driven   multiferroic nanoarchitectures[J]. Nano Research, 2020, 13(8):
                 photocatalysis by La-doped magnetic BiFeO 3-based multiferroics for   2183-2191.
                 water purification[J]. Nano Energy, 2022, 93: 106792.     [102]  KURIAN M, THANKACHAN S. Structural diversity and
            [86]  SUN G F,  LI N, ZUO S X,  et al. Piezo-photocatalysis over   applications of spinel ferrite core-shell nanostructures-A review[J].
                 phase-engineered  MoSe 2  modified  Bi 2WO 6  hierarchical  Open Ceramics, 2021, 8: 100179.
                 microspheres: Utilizing piezoelectric effect to enhance photocatalytic   [103]  LI Y H (李英豪), ZHENG X Q (郑向前), GAO X Y (高晓亚), et al.
                 performance[J]. Ceramics International, 2022, 48(24): 37242-37252.     Preparation of CoFe 2O 4 and its peroxymonosulfate activation for
            [87]  ZHENG H J,  LI  X, ZHU  K J,  et al. Semiconducting BaTiO 3@C   degradation  of  sulfamethoxazole[J]. Fine Chemicals (精细化工),
                 core-shell structure for improving piezo-photocatalytic performance[J].   2022, 39(5): 1020-1027.
                 Nano Energy, 2022, 93: 106831.                [104]  MUSHTAQ F,  CHEN X Z, HOOP M,  et al. Piezoelectrically
            [88]  SUN F J, HE J, WU P, et al. Magnetic photocatalyst CoFe 2O 4-Ag 2O   enhanced photocatalysis with BiFeO 3 nanostructures for efficient
                 with magnetic aggregation bed photocatalytic reactor for continuous   water remediation[J]. iScience, 2018, 4: 236-246.
                 photodegradation  of Methyl Orange[J].  Chemical Engineering   [105]  MUSHTAQ  F, CHEN X  Z, TORLAKCIK  H,  et al.
                 Journal, 2020, 397: 125397.                       Magnetoelectrically driven catalytic degradation of  organics[J].
            [89]  YANG  Q, DU J Y, NIE  X Q,  et al. Magnetic field-assisted   Advanced Materials, 2019, 31(28): 1901378.
   58   59   60   61   62   63   64   65   66   67   68