Page 62 - 《精细化工》2023年第6期
P. 62

·1212·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [37]  YOU D T, LIU L,  YANG Z Y,  et al. Polarization-induced internal   Bisphenol A[J]. Journal of Hazardous Materials, 2021, 410: 124539.
                 electric field to  manipulate piezo-photocatalytic and ferro-   [55]  ZHOU L,  LIU  Z H, GUAN Z P,  et al. 0D/2D plasmonic
                 photoelectrochemical performance in bismuth ferrite nanofibers[J].   Cu 2–xS/g-C 3N 4 nanosheets harnessing UV-Vis-NIR broad spectrum
                 Nano Energy, 2022, 93: 106852.                    for photocatalytic  degradation of antibiotic pollutant[J]. Applied
            [38]  DIJKSTRA M F J, MICHORIUS A, BUWALDA H,  et al.   Catalysis B: Environmental, 2020, 263: 118326.
                 Comparison of the efficiency of immobilized and suspended systems   [56]  ZHU Q H, ZHANG  K,  LI  D Q,  et al. Polarization-enhanced
                 in photocatalytic degradation[J]. Catalysis Today, 2001, 66(2):   photocatalytic activity in non-centrosymmetric  materials based
                 487-494.                                          photocatalysis: A review[J].  Chemical Engineering Journal, 2021,
            [39]  WANG Z H, LI Y Y, WU C, et al. Electric-/magnetic-field-assisted   426: 131681.
                 photocatalysis: Mechanisms and design  strategies[J]. Joule, 2022,   [57]  CHEN J, LUO  W S, YU S  G,  et al. Synergistic effect of
                 6(8): 1798-1825.                                  photocatalysis and pyrocatalysis of pyroelectric ZnSnO 3 nanoparticles
            [40]  YANG M Q, GAO M M, HONG M H, et al. Visible-to-NIR photon   for dye degradation[J]. Ceramics International, 2020, 46(7): 9786-
                 harvesting: Progressive engineering  of catalysts for solar-powered   9793.
                 environmental purification and fuel production[J].  Advanced   [58]  XUE C, MAO Y P, WANG W L, et al. Current status of applying
                 Materials, 2018, 30(47): 1802894.                 microwave-associated catalysis for the degradation of organics in
            [41]  TANG Z Y, MA D R, CHEN Q,  et al. Nanomaterial-enabled   aqueous phase-A review[J]. Journal of Environmental  Sciences,
                 photothermal-based solar water disinfection processes: Fundamentals,   2019, 81: 119-135.
                 recent advances, and mechanisms[J]. Journal of Hazardous Materials,   [59]  ARELLANO-CORTAZA  M, RAMÍREZ-MORALES E,  PAL U,  et
                 2022, 437: 129373.                                al. pH  dependent morphology and texture evolution of ZnO
            [42]  YASOTHAMANI V, KARTHIKEYAN L, SHYAMSIVAPPAN S,   nanoparticles fabricated by  microwave-assisted chemical  synthesis
                 et al. Synergistic effect of photothermally targeted NIR-responsive   and their photocatalytic dye degradation activities[J]. Ceramics
                 nanomedicine-induced immunogenic cell death for effective triple   International, 2021, 47(19): 27469-27478.
                 negative breast cancer therapy[J]. Biomacromolecules, 2021, 22(6):   [60]  REMYA N, SWAIN A. Soft drink industry wastewater treatment in
                 2472-2490.                                        microwave photocatalytic system-Exploration of removal efficiency
            [43]  DAI X L, LI X, LIU Y H, et al. Recent advances in nanoparticles-   and degradation mechanism[J].  Separation and  Purification
                 based photothermal therapy synergizing with immune checkpoint   Technology, 2019, 210: 600-607.
                 blockade therapy[J]. Materials & Design, 2022, 217: 110656.     [61]  MOREIRA A J, BORGES A C, GOUVEA L F C, et al. The process
            [44]  XU Y  Y,  LIU M, TONG  F X,  et al. Strain-assisted in-situ formed   of atrazine degradation, its mechanism,  and the formation  of
                 oxygen defective  WO 3 film for photothermal-synergistic reverse   metabolites using UV and UV/MW photolysis[J].  Journal  of
                 water gas shift reaction and single-particle study[J]. Chemical   Photochemistry and Photobiology A: Chemistry, 2017, 347: 160-167.
                 Engineering Journal, 2022, 433: 134199.       [62]  XIA H L, LI C W, YANG G Y, et al. A review of microwave-assisted
            [45]  HE Y L, ZHOU Y, FENG J, et al. Photothermal conversion of CO 2 to   advanced oxidation processes for wastewater treatment[J].
                 fuel with nickel-based catalysts: A review[J]. Environmental   Chemosphere, 2022, 287: 131981.
                 Functional Materials, 2022, 1(2): 204-217.     [63]  PANG Y X, KONG  L J, LEI H Y,  et al. Combined
            [46]  WEI L F, YU C L, YANG K, et al. Recent advances in VOCs and CO   microwave-induced and photocatalytic oxidation using zinc ferrite
                 removal via photothermal synergistic catalysis[J]. Chinese Journal of   catalyst for efficient degradation of tetracycline hydrochloride in
                 Catalysis, 2021, 42(7): 1078-1095.                aqueous  solution[J]. Journal of the Taiwan Institute of  Chemical
            [47]  GUO  C X (郭彩霞), MA X J (马小杰), WANG B (王博). Metal-   Engineers, 2018, 93: 397-404.
                 organic frameworks-based composites and their  photothermal   [64]  LING  L L, FENG Y W, LI H,  et al. Microwave induced surface
                 applications[J]. Acta Chimica Sinica (化学学报), 2021, 79(8):   enhanced pollutant adsorption and photocatalytic degradation on
                 967-985.                                          Ag/TiO 2[J]. Applied Surface Science, 2019, 483: 772-778.
            [48]  GUO Z Y (国志颖).  The research on Au nanoparticles plasmonic-   [65]  ZUO S Y, LI D  Y, XU H M,  et al. An integrated microwave-
                 enhanced photocatalytic water splitting for hydrogen evolution[D].   ultraviolet catalysis process of four peroxides  for wastewater
                 Qingdao: Qingdao University of Science and Technology (青岛科技  treatment: Free radical generation rate and mechanism[J]. Chemical
                 大学), 2022.                                        Engineering Journal, 2020, 380: 122434.
            [49]  YAO G Y (姚国英). Study on localized surface plasmon resonance   [66]  KI S J, JEON K J, PARK  Y K,  et al. Improving removal of
                 effect in Cu/TiO 2 composite photocatalytic  material system[D].   4-chlorophenol using a TiO 2 photocatalytic system with microwave
                 Kunming: Kunming University of Science and Technology (昆明理  and ultraviolet radiation[J]. Catalysis Today, 2017, 293/294: 15-22.
                 工大学), 2020.                                   [67]  CHENG X (程欣). UItrasonic degradation of MO was studied with
            [50]  ZHOU  L N, SWEARER D F, ZHANG C,  et al. Quantifying hot   TiO 2 as catalyst[D]. Xi'an: Shaanxi Normal University (陕西师范大
                 carrier and thermal contributions in plasmonic photocatalysis[J].   学), 2007.
                 Science, 2018, 362(6410): 69-72.              [68]  MA Z Y,  HE  Y  Q, LI X B,  et al. Ultrasonic-assisted efficient
            [51]  YI F T, MA J Q,  LIN C W,  et al. Electronic and thermal transfer   degradation of tetracycline over  ZnO/BiOBr heterojunctions:
                 actuating memory  catalysis for organic removal by a  plasmonic   Synergistic effect and role of  oxidative species[J]. Materials
                 photocatalyst[J]. Chemical Engineering Journal, 2022, 427: 132028.     Research Bulletin, 2022, 146: 111591.
            [52]  WANG Z L, WANG Y Y, ZHANG Y N, et al. Efficient photothermal   [69]  GAO B (高博), LIU B (刘彬), WANG X (王新),  et al. Research
                 degradation on Bi 12CoO 20 sillenite with a strong internal electric field   progress  of the combined use of ultrasonic and semiconductor
                 induced by the thermal effect[J]. Applied Catalysis B: Environmental,   materials in organic pollutants degradation[J]. Journal  of Ecology
                 2022, 313: 121452.                                and Rural Environment (生态与农村环境学报), 2018, 34(6):
            [53]  WANG X Z, HE Y R, HU Y W,  et al. Photothermal-conversion-   481-488.
                 enhanced photocatalytic activity of flower-like CuS superparticles   [70] WANG Y (王颖), NIU J F (牛军峰), ZHANG Z Y (张哲赟), et al.
                 under solar light irradiation[J]. Solar Energy, 2018, 170: 586-593.     Sono-photocatalytic degradation of organic pollutants in water[J].
            [54]  ZHAO W, MA S S, YANG G, et al. Z-Scheme Au decorated carbon   Progress in Chemistry (化学进展), 2008, 20(10): 1621-1627.
                 nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for   [71]  WU C D (吴纯德), FAN J C (范瑾初). Research and development of
                 catalytic reduction of  hexavalent chromium and oxidation of   ultrasonic cavitation to degrade organic  matter in water[J]. China
   57   58   59   60   61   62   63   64   65   66   67