Page 161 - 《精细化工》2023年第8期
P. 161

第 8 期               尚晓煜,等:  蛭石/聚对苯二甲酸-己二酸丁二醇酯复合薄膜的制备与性能                                 ·1775·


            PBAT 薄膜,VMT/PBAT 复合薄膜横向拉伸强度、                           Composite Materials, 2020, 54(10): 1373-1382.
                                                               [10]  CALDERARO M  P, PINHEIRO I F, SOUZA D D H  S,  et al.
            断裂伸长率最大分别降低 79.6%、58.0%。当 VMT
                                                                   PBAT/hybrid nanofillers composites—Part 2: Morphological, thermal
            含量达到 20%时,相容剂 SMA 的添加使 VMT/                            and rheological properties[J]. Journal of Applied Polymer Science,
                                                                   2020, 138: 50414-50427.
            PBAT/SMA 复合薄膜的横向拉伸强度、断裂伸长率
                                                               [11]  RASYIDA A, FUKUSHIMA K,  YANG M C. Structure and
            相比 VMT/PBAT 复合薄膜提高 68.2%、47.6%,纵                        properties of organically  modified poly(butylene adipate-co-
            向拉伸强度、断裂伸长率相比 VMT/PBAT 复合薄膜                             terephthalate) based nanocomposites[J]. IOP Conference Series:
                                                                    Materials Science and Engineering, 2017, 223: 012023-012036.
            提高 33.3%、7.3%。                                     [12]  MOHANTY S,  NAYAK S K.  Biodegradable nanocomposites of
                                                                   poly(butylene adipate-co-terephthalate) (PBAT) and organically
            参考文献:                                                  modified layered silicates[J]. Journal of Polymers & the Environment,
                                                                   2012, 20(1): 195-207.
            [1]   LIU T Y (刘天祎), LIANG B (梁兵), LONG J P (龙佳朋). Synthesis   [13]  WANG J (王君), HU X Y (胡孝迎), ZHENG Q (郑强), et al. Effect
                 and application of a biodegradable PBAT composite compatibilizer   of contents of modified montmorillonite on rheological behavior of
                 [J]. Fine Chemicals (精细化工), 2022, 39(3): 598-603,632.   nylon 1010 composites[J]. Polymer Materials Science & Engineering
            [2]   ZHANG T,  ZHANG C L, YANG  Y,  et al. Improved properties  of   (高分子材料科学与工程), 2016, 32(11): 92-97.
                 poly(butylene adipate-co-terephthalate)/calcium carbonate films   [14] ZHANG  Y(张雨), YAN G M(严光明), ZHANG G(张刚),  et al.
                 through silane modification[J]. Journal of Applied Polymer Science,
                 2021, 138(38): 50970-50980.                       Synthesis and properties of high melt flowability polyarylate[J].
            [3]   WANG X P (王雪盼), LI N X (李乃祥), PAN X H (潘小虎), et al.   Polymer Materials Science & Engineering (高分子材料科学与工
                                                                   程), 2020,36(5): 161-166.
                 Effect of calcium carbonate content on the properties of PBAT film   [15]  HANKEN R B, CAVALCANTI S N, ARAÚJO A, et al. Effect of the
                 [J]. Synthetic Technology & Application (合成技术及应用), 2022,
                 37(1): 12-15.                                     organically modified vermiculite clay loading on the rheological and
            [4]   CHEN J H, CHEN C C, YANG M C. Characterization of nanocomposites   flammability properties of biopolyethylene/vermiculite clay
                 of poly(butylene adipate-co-terephthalate) blending with organoclay[J].   biocomposites[J]. Journal of Thermoplastic Composite Materials,
                 Journal of Polymer Research, 2011, 18(6): 2151-2159.   2022, 35(2): 192-210.
            [5]   OLIVATO J B, MARINI J, POLLET E, et al. Elaboration, morphology   [16]  WANG J (王君), HE M (何敏), HU X Y (胡孝迎), et al. Effect of
                 and properties  of starch/polyester  nano-biocomposites based on   OMMT on rheological behaviors  of PA6/OMMT composites[J].
                 sepiolite clay[J]. Carbohydrate Polymers Scientific & Technological   Plastics (塑料), 2016, 45(4): 55-57, 107.
                 Aspects of Industrially Important Polysaccharides, 2015, 118: 250-256.     [17]  ZONG Y (宗原), ZHANG L  M  (张陆旻), DAI G C  (戴干策).
            [6]   MA N (马宁), LIU Y K (刘玉坤), HUANG M M (黄淼铭), et al.   Correlation between thermal properties and rheological behavior of
                 Electrical properties of PA610/organo-vermiculite nanocomposites   graphite filled polypropylene[J]. Polymer Materials Science &
                 [J]. Engineering Plastics Application (工程塑料应用), 2020, 48(2):   Engineering (高分子材料科学与工程), 2009, 25(4): 74-76.
                 35-38.                                        [18]  JIANG S J (姜苏俊), JIA X M (贾向明), LI G X (李光宪),  et al.
            [7]   ZHANG J H,  ZHUANG W,  ZHANG Q,  et al. Novel polylactide/   Relationship  between the dynamic rheologicai behavior of multi-
                 vermiculite nanocomposites by  in situ intercalative polymerization.   component polymer systems and their phase behavior[J]. Polymer
                 Ⅰ. Preparation, characterization, and properties[J]. Polymer Composites,   Bulletin (高分子通报), 2004, (1): 57-64.
                 2010, 28(4): 545-550.                         [19]  ZHANG Y X (张玉欣). Study on the preparation and properties of
            [8]   TANG D, ZHANG C,  WENG Y.  Effect of  multi-functional epoxy   high-barrier PBAT/layered nano-inorganic composite mulch films
                 chain extender on  the weathering resistance performance of poly   [D]. Guangzhou:South China University of Technology (华南理工大
                 (butylene adipate-co-terephthalate) (PBAT)[J]. Polymer  Testing,   学), 2018.
                 2021, (99): 107204-107213.                    [20]  LI J X (李家旭).  Study and control on gas barrier properties of
            [9]   NUNES E, SOUZA A,  ROSA D. Use of a chain extender as a   poly(butylene adipate-co-terephthalate) films[D]. Hangzhou: Zhejiang
                 dispersing agent of the CaCO 3  into  PBAT matrix[J]. Journal of   University (浙江大学), 2020.




            (上接第 1766 页)                                           2020, 54(6): 3691-3701.
                                                               [27] LENG  C  (冷超), MA  C Y  (马春雨), WANG  R T (王瑞腾), et al.
            [23]  YAN X  Q, XIA  M  Y, XU  B R, et  al. Fabrication of novel   Preparation and  visible light catalytic activity of plasma-treated
                 all-solid-state Z-scheme heterojunctions of 3DOM-WO 3/Pt coated by   TiO 2/WO 3/Bi 2WO 6 nanocomposites[J]. Fine Chemicals (精细化工),
                 mono- or few-layered WS 2 for efficient photocatalytic decomposition   2022, 39(8): 1603-1611.
                 performance in Vis-NIR region[J]. Applied Catalysis B: Environmental,   [28]  WANG  Y T, CAI  J M, WU M Q,  et al. Rational construction of
                 2018, 232: 481-491.                               oxygen vacancies  onto tungsten trioxide to improve visible light
            [24]  HUANG Y C, GUO Z J, LIU H, et al. Heterojunction architecture of   photocatalytic water oxidation reaction[J]. Applied Catalysis B:
                 N-doped WO 3 nanobundles with Ce 2S 3 nanodots  hybridized on a   Environmental, 2018, 239: 398-407.
                 carbon textile enables a highly efficient flexible photocatalyst[J].   [29]  LU Y, LI Y, WANG Y Y, et al. Two-photon induced NIR active core-
                 Advanced Functional Materials, 2019, 29(45): 1903490-1903499.   shell structured WO 3/CdS for enhanced solar light photocatalytic
            [25]  BU X Y (卜鑫焱), HUANG Q  L (黄权龙), ZHAO X  L (赵西连),     performance[J]. Applied Catalysis B: Environmental, 2020, 272:
                 et al. WO 3/C/Ag 3PO 4 composites for photocatalytic degradation of   118979-118985.
                 bisphenol A[J]. Fine Chemicals (精细化工), 2021, 38(3): 496-503.   [30]  GAO Y, LIN J  Y, ZHANG  Q  Z,  et al. Facile synthesis of
            [26]  ZHANG  R M, SONG C J, KOU  M P, et al. Sterilization of   heterostructured YVO 4/g-C 3N 4/Ag photocatalysts with  enhanced
                 Escherichia coli by photothermal synergy of WO 3–x/C nanosheet   visible-light photocatalytic performance[J]. Applied Catalysis B:
                 under infrared light irradiation[J]. Environmental Science & Technology,   Environmental, 2018, 224: 586-593.
   156   157   158   159   160   161   162   163   164   165   166