Page 110 - 《精细化工》2023年第9期
P. 110

·1958·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [6]   CHELAZZI D, BADILLO-SANCHEZ D,  GIORGI  R,  et al.   124: 71-79.
                 Self-regenerated  silk fibroin with controlled crystallinity for the   [14]  ALAVARSE A C,  FRACHINI E C  G, DA SILVA R  L C G,  et al.
                 reinforcement of silk[J]. Journal of Colloid and Interface Science,   Crosslinkers for polysaccharides and proteins: Synthesis conditions,
                 2020, 576: 230-240.                               mechanisms, and crosslinking efficiency: A review[J]. International
            [7]  GRABSKA-ZIELIŃSKA S, SIONKOWSKA A. How  to improve   Journal of Biological Macromolecules, 2022, 202: 558-596.
                 physico-chemical properties of silk fibroin materials for biomedical   [15]  AL-HASSAN A A, NORZIAH M  H. Effect of transglutaminase
                 applications?-Blending and cross-linking of silk fibroin-A review[J].   induced  crosslinking on  the properties  of starch/gelatin films[J].  Food
                 Materials, 2021, 14(6): 1-34.                     Packaging and Shelf Life, 2017, 13: 15-19.
            [8]   LOW J T, YUSOFF N I S M, OTHMAN N, et al. Silk fibroin-based   [16]  LIU H,  LIU Y, SUN J,  et al. Properties of polysaccharides and
                 films  in food packaging  applications:  A review[J]. Comprehensive   glutamine transaminase used in mozzarella cheese as texturizer and
                 Reviews in Food Science and Food Safety, 2022, 21(3): 2253-2273.   crosslinking agents-ScienceDirect[J]. LWT, 2019, 99: 411-416.
            [9]   CHENG J L (程佳玲),  YE J (叶军), WANG  H L  (王洪亮),  et al.   [17]  HUANG D (黄盾), CAO  L F (曹丽芬), HE J (何俊). Ala/EGDE
                 Research progress  on degradability and biocompatibility of natural   strengthening  effect on fragile silk fabrics[J]. Polymer Materials
                 silk fibroin in vitro and in vivo[J]. Acta Pharmacologica Sinica (药学  Science and Engineering (高分子材料科学与工程), 2013, 29(3):
                 学报), 2022, 57(4): 1002-1009.                      74-77.
            [10] GUO  L  (郭丽), JI L J (吉立静), JIA  L (贾兰),  et al. Research   [18]  ZHANG  Z B (张治斌), LI G (李刚), MAO S X (毛森贤),  et al.
                 progress on chemical modification of silk fibroin[J]. New Chemical   Preparation and antimicrobial properties of silk fibroin/chitosan
                 Materials (化工新型材料), 2015, 43(11): 4-6.            microspheres[J]. Textile Journals (纺织学报), 2019, 40(10): 7-12.
            [11]  KURNIASIH M, CAHYATI T, DEWI R S. Carboxymethyl chitosan   [19]  LIU J (刘娟). Comprehensive study on aging of silk  fabrics by
                 as an antifungal agent on gauze[J]. International Journal  of   various instrumental analysis  methods[D]. Shanghai: East China
                 Biological Macromolecules, 2018, 119: 166-171.    University of Science and Technology (华东理工大学), 2014.
            [12]  SHARIATINIA Z. Carboxymethyl chitosan: Properties and   [20]  ZHAO Z Y (赵洲洋). Hydrophobic and antibacterial cotton fabric
                 biomedical applications[J]. International Journal of  Biological   was constructed based on amphiphilic Janus particles[D]. Xi′an: Shaanxi
                 Macromolecules, 2018, 120: 1406-1419.             University of Science and Technology (陕西科技大学), 2021.
            [13]  HAO  X Y, WANG X, YANG W  M,  et al. Comparisons of the   [21]  WAHID F, YIN J J, XUE D D, et al. Synthesis and characterization
                 restoring and reinforcement effects of carboxymethyl chitosan-silk   of  antibacterial  carboxymethyl  chitosan/ZnO  nanocomposite
                 fibroin (Bombyx Mori/Antheraea Yamamai/Tussah) on aged historic   hydrogels[J].  International Journal of  Biological Macromolecules,
                 silk[J]. International Journal of Biological Macromolecules, 2019,   2016, 88: 273-279.




            (上接第 1866 页)                                           studies[J]. ACS Omega, 2019, 4(15): 16441-16449.
                                                               [66]  KHAN J, IQBAL N, ASGHAR A, et al. Novel amine functionalized
            [62]  ZHANG X Y (张欣颖), SHI G  L (石国亮). Research  progress in   metal organic framework synthesis for enhanced carbon dioxide
                 modification of carbon dioxide solid  alkali adsorbents[J]. Modern   capture[J/OL]. Materials Research  Express, 2019, 6(10). DOI:
                 Chemical Industry (现代化工), 2022, 42(8): 50-53.     10.1088/2053-1591/ab3ff8.
            [63]  WANG J (王静), CHEN S (陈双), XU J Y (徐嘉宇), et al. Preparation   [67]  JUN H J, YOO  D K, JHUNG S  H. Metal-organic framework
                 of porous carbon  materials by activation of chitosan hydrothermal   (MOF-808) functionalized with ethyleneamines: Selective adsorbent
                 carbon with low concentration of KOH and its CO 2 adsorption   to capture CO 2 under low pressure[J]. Journal of CO 2  Utilization,
                 performance[J]. New Carbon Materials (新型炭材料), 2021, 36(6):   2022, 58: 101932.
                 1081-1090.                                    [68]  WAN A, REBITANIM N Z, SALLEH M,  et al. Carbon dioxide
            [64]  WANG Y, DU T, SONG Y, et al. Amine-functionalized mesoporous   adsorption on coconut shell biochar[J]. Progress in Clean Energy, 2015,
                 ZSM-5 zeolite adsorbents for carbon dioxide capture[J]. Solid State   1: 683-693.
                 Sciences, 2017, 73: 27-35.                    [69]  MADZAKI H, WAN K G, REBITANIM N Z, et al. Carbon dioxide
            [65]  KARKA S, KODUKULA S, NANDURY S V, et al. Polyethylenimine-   adsorption on sawdust biochar[J]. Procedia Engineering, 2016, 148:
                 modified zeolite 13X for CO 2 capture: Adsorption and kinetic   718-725.




            (上接第 1924 页)                                           and tuning properties[J]. Carbohydrate Polymers, 2018, 186: 35-44.
            [14] HAN  X  (韩潇), LI W  L  (李文亮),  ZHANG J H (张建焕)  et al.   [18]  LIU C (刘晨), CHEN F E (陈凤恩), ZHANG J X (张家鑫), et al.
                 Preparation of conductive PET knitted fabric and its strain-resistance   Study on electrochemical synthesis of polyaniline film by confocal
                 sensing performance[J]. China Dyeing & Finishing (印染), 2016,   Raman spectroscopy[J]. Acta Physico-Chimica Sinica (物理化学学
                 42(22): 13-17.                                    报), 2003, 19(9): 810-814.
            [15]  WENG J L (翁佳丽), WANG J (王冀), ZHANG W (张维). Research   [19]  HOU L M (侯琳萌). Study on the preparation of polyaniline and its
                 progress in preparation and application of polymer based conductive   activation  of hydrogen  peroxide[D]. Hohhot: Inner  Mongolia
                 fabrics[J]. Knitting Industries (针织工业), 2022, (8): 18-22.   University (内蒙古大学), 2021.
            [16] YE T (叶挺), FAN L H (凡力华), WANG C X (王潮霞), et al. The   [20]  LI F (李帆). Flexible electrochromic supercapacitors  based on
                 corrosion resistance of graphene modified polyaniline epoxy coating[J].   PANI[D]. Nanjing: Southeast University (东南大学), 2020.
                 Paint & Coatings Industry (涂料工业), 2020, 50(12): 14-18.   [21]  XIE C P (解承鹏), YU H Y (于海洋), CHEN X G (陈学刚), et al.
            [17]  TISSERA N D,  WIJESENA R N, RATHNAYAKE  S,  et al.   Preparation of polyamide/polyaniline composite conductive fibers by
                 Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on   in-situ polymerization[J]. Polymer Bulletin (高分子通报), 2017, (6):
                 cotton textiles: Improved electrical conductivity, electrical switching,   39-46.
   105   106   107   108   109   110   111   112   113   114   115