Page 145 - 《精细化工》2023年第9期
P. 145
第 9 期 吕奇珅,等: NiAl 复合催化剂催化乙酰丙酸加氢制备 γ-戊内酯 ·1993·
性。反应温度 140 ℃、H 2 压力 3 MPa 下反应 2 h 可 [18] DUTTA S, IRIS K M, TSANG D C W, et al. Green synthesis of
gamma-valerolactone (GVL) through hydrogenation of biomass-derived
实现 LA 完全转化为 GVL,回收后的催化剂经过 6
levulinic acid using non-noble metal catalysts: A critical review[J].
次循环使用后 LA 转化率和 GVL 产率仍能分别达到 Chemical Engineering Journal, 2019, 372: 992-1006.
95%和 95%。 [19] ZHANG Y (张因), GUO J J (郭健健), REN H J (任欢杰), et al.
Effect of intercalation anions on catalytic performance of
参考文献: hydrotalcite-like precursor Ni-Al 2O 3 catalyst for levulinic acid
hydrogenation[J]. CIESC Journal (化工学报), 2020, 71(8): 3614-3624.
[1] ZHANG Z H. Synthesis of gamma-valerolactone from carbohydrates [20] YI Z X, HU D, XU H, et al. Metal regulating the highly selective
and its applications[J]. Chemsuschem, 2016, 9(2): 156-171. synthesis of gamma-valerolactone and valeric biofuels from
[2] WEI J N (魏珺楠), TANG X (唐兴), SUN Y (孙勇), et al. biomass-derived levulinic acid[J]. Fuel, 2020, 259: 116208.
Applications of novel biomass-derived platform molecule [21] XU H, HU D, YI Z X, et al. Solvent tuning the selective
γ-valerolactone[J]. Progress in Chemistry (化学进展), 2016, 28(11): hydrogenation of levulinic acid into biofuels over Ni-metal organic
1672. framework-derived catalyst[J]. ACS Applied Energy Materials, 2019,
[3] WANG J T (王京拓), ZHANG M H (张明惠). Catalytic reactions of 2(10): 6979-6983.
levulinic acid as a biomass-derived platform molecule[J]. Petrochemistry [22] WANG J (王杰), ZHANG Y (张因), GUO J J (郭健健), et al.
Technology (石油化工), 2016, 45(5): 513-520. γ-valerolactone synthesis from levulinic acid hydrogenation over
[4] LIU D W, ZHANG L, HAN W P, et al. One-step fabrication of Ni/ZrO 2-SiO 2 catalyst[J]. CIESC Journal (化工学报), 2018, 69(8):
Ni-embedded hierarchically-porous carbon microspheres for 3452-3459.
levulinic acid hydrogenation[J]. Chemical Engineering Journal, 2019, [23] JIANG K, SHENG D, ZHANG Z H, et al. Hydrogenation of
369: 386-393. levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al 2O 3
[5] PINTO B P, FORTUNA A L L, CARDOSO C P, et al. Hydrogenation supported Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59.
of levulinic acid (LA) to γ-valerolactone (GVL) over Ni-Mo/C [24] GUPTA S S R, KANTAM M L. Selective hydrogenation of levulinic
catalysts and water-soluble solvent systems[J]. Catalysis Letters, acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst[J].
2017, 147(3): 751-757. Catalysis Today, 2018, 309: 189-194.
[6] LIU H, CAO X J, TANG X, et al. Choline chloride-promoted [25] YU J J, JIANG Z, ZHU L, et al. Adsorption/desorption studies of
efficient solvent-free hydrogenation of biomass-derived levulinic NO x on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like
acid to gamma-valerolactone over Ru/C[J]. Green Chemistry, 2021, compounds[J]. The Journal of Physical Chemistry B, 2006, 110(9):
23(5): 1983-1988. 4291-4300.
[7] MANZER L E. Catalytic synthesis of α-methylene-γ-valerolactone: A [26] YAO S X, WANG X C, JIANG Y J, et al. One-step conversion of
biomass-derived acrylic monomer[J]. Applied Catalysis A: General, biomass-derived 5-hydroxymethylfurfural to 1, 2, 6-hexanetriol over
2004, 272 (1/2): 249-256. Ni-Co-Al mixed oxide catalysts under mild conditions[J]. ACS
[8] LUO W H, DEKA U, BEALE U M, et al. Ruthenium-catalyzed Sustainable Chemistry & Engineering, 2014, 2(2): 173-180.
hydrogenation of levulinic acid: Influence of the support and solvent [27] ZHAO L, MU X L, LIU T S, et al. Bimetallic Ni-Co catalysts
on catalyst selectivity and stability[J]. Journal of Catalysis, 2013, supported on Mn-Al oxide for selective catalytic CO hydrogenation
301(5): 175-186. to higher alcohols[J]. Catalysis Science & Technology, 2018, 8(8):
[9] FTOUNI J, MURILLO A, GORACHEV A, et al. ZrO 2 is preferred 2066-2076.
over TiO 2 as support for the Ru-catalyzed hydrogenation of levulinic [28] GABROVSKA M, EDREVA-KARDJIEVA R, TENCHEV K, et al.
acid to γ-valerolactone[J]. ACS Catalysis, 2016, 6(8): 5462-5472. Effect of Co-content on the structure and activity of Co-Al
[10] FU J, SHENG D, LU X Y, et al. Hydrogenation of levulinic acid over hydrotalcite-like materials as catalyst precursors for CO oxidation[J].
nickel catalysts supported on aluminum oxide to prepare Applied Catalysis A: General, 2011, 399(1/2): 242-251.
γ-valerolactone[J]. Catalysts, 2015, 6 (1): 6-15. [29] LONG X D, SUN P S, LI Z L, et al. Magnetic Co/Al 2O 3 catalyst
[11] ALMEIDA L D, ROCHA A, RODRIGUES T, et al. Highly selective derived from hydrotalcite for hydrogenation of levulinic acid to
hydrogenation of levulinic acid catalyzed by Ru on TiO 2-SiO 2 hybrid γ-valerolactone[J]. Chinese Journal of Catalysis, 2015, 36(9):
support[J]. Catalyst Today, 2020, 344: 158-165. 1512-1518.
[12] IBRAHIM M, POREDDY R, PHILIPPOT K, et al. Chemoselective [30] WU Z Y, JI W B, HU B C, et al. Partially oxidized Ni nanoparticles
hydrogenation of arenes by PVP supported Rh nanoparticles[J]. supported on Ni-N co-doped carbon nanofibers as bifunctional
Dalton Trans, 2016, 45(48): 19368-19373. electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 51:
[13] YAN K, LAFEUR T, WU G S, et al. Highly selective production of 286-293.
value-added gamma-valerolactone from biomass-derived levulinic [31] ZHOU P, ZHANG Z H, JIANG L, et al. A versatile cobalt catalyst for
acid using the robust Pd nanoparticles[J]. Applied Catalysis A: the reductive amination of carbonyl compounds with nitro compounds by
General, 2013, 468: 52-58. transfer hydrogenation[J]. Applied Catalysis B: Environmental, 2017,
[14] LU Y W, TANG Q H, WANG Y X, et al. Synergy in Sn-Mn oxide 210: 522-532.
boosting the hydrogenation catalysis of supported Pt nanoparticles [32] JIANG X C, LI H M, LI S L, et al. Metal-organic framework-derived
for selective conversion of levulinic acid[J]. Applied Catalysis B: Ni-Co alloy@carbon microspheres as high-performance counter
Environmental, 2022, 300: 120746. electrode catalysts for dye-sensitized solar cells[J]. Chemical Engineering
[15] LANDENNA L, VILLA A, ZANELLA R, et al. Gold-iridium Journal, 2018, 334: 419-431.
catalysts for the hydrogenation of biomass derived products[J]. [33] ZENG L M, CUI X Z, CHEN L S, et al. Non-noble bimetallic alloy
Chinese Journal of Catalysis, 2016, 37(10): 1771-1775. encased in nitrogen-doped nanotubes as a highly active and durable
[16] HUANG X M, LIU K, VRIJBURG W L, et al. Hydrogenation of electrocatalyst for oxygen reduction reaction[J]. Carbon, 2017, 114:
levulinic acid to γ-valerolactone over Fe-Re/TiO 2 catalysts[J]. 347-355.
Applied Catalysis B: Environmental, 2020, 278: 119314. [34] DING J T, WANG P, JI S, et al. Mesoporous nickel selenide N-doped
[17] KOLEY P, RAO B S, SHIT S C, et al. One-pot conversion of carbon as a robust electrocatalyst for overall water splitting[J].
levulinic acid into gamma-valerolactone over a stable Ru Electrochimica Acta, 2019, 300: 93-101.
tungstosphosphoric acid catalyst[J]. Fuel, 2021, 289: 119900. (下转第 2063 页)