Page 145 - 《精细化工》2023年第9期
P. 145

第 9 期                   吕奇珅,等: NiAl 复合催化剂催化乙酰丙酸加氢制备 γ-戊内酯                               ·1993·


            性。反应温度 140  ℃、H 2 压力 3 MPa 下反应 2 h 可               [18]  DUTTA S, IRIS K M,  TSANG D  C  W,  et al. Green synthesis of
                                                                   gamma-valerolactone (GVL) through hydrogenation of biomass-derived
            实现 LA 完全转化为 GVL,回收后的催化剂经过 6
                                                                   levulinic acid using non-noble metal catalysts: A critical review[J].
            次循环使用后 LA 转化率和 GVL 产率仍能分别达到                            Chemical Engineering Journal, 2019, 372: 992-1006.
            95%和 95%。                                          [19]  ZHANG Y (张因), GUO J J (郭健健), REN H J (任欢杰),  et al.
                                                                   Effect of intercalation anions  on catalytic performance of
            参考文献:                                                  hydrotalcite-like precursor Ni-Al 2O 3  catalyst for levulinic acid
                                                                   hydrogenation[J]. CIESC Journal (化工学报), 2020, 71(8): 3614-3624.
            [1]   ZHANG Z H. Synthesis of gamma-valerolactone from carbohydrates   [20]  YI Z X, HU D, XU H, et al. Metal regulating the highly selective
                 and its applications[J]. Chemsuschem, 2016, 9(2): 156-171.   synthesis of gamma-valerolactone  and valeric biofuels from
            [2]   WEI J N (魏珺楠), TANG  X (唐兴), SUN Y (孙勇),  et al.   biomass-derived levulinic acid[J]. Fuel, 2020, 259: 116208.
                 Applications  of novel biomass-derived platform molecule   [21]  XU H,  HU D, YI Z X,  et al. Solvent tuning the selective
                 γ-valerolactone[J]. Progress in Chemistry (化学进展), 2016, 28(11):   hydrogenation of levulinic acid into biofuels over Ni-metal organic
                 1672.                                             framework-derived catalyst[J]. ACS Applied Energy Materials, 2019,
            [3]   WANG J T (王京拓), ZHANG M H (张明惠). Catalytic reactions of   2(10): 6979-6983.
                 levulinic acid as a biomass-derived platform molecule[J]. Petrochemistry   [22]  WANG J (王杰),  ZHANG Y (张因), GUO J J (郭健健),  et al.
                 Technology (石油化工), 2016, 45(5): 513-520.          γ-valerolactone synthesis from levulinic acid hydrogenation over
            [4]   LIU D W, ZHANG L, HAN W P,  et al.  One-step fabrication of   Ni/ZrO 2-SiO 2 catalyst[J]. CIESC Journal (化工学报), 2018, 69(8):
                 Ni-embedded hierarchically-porous  carbon microspheres for   3452-3459.
                 levulinic acid hydrogenation[J]. Chemical Engineering Journal, 2019,   [23]  JIANG K, SHENG D, ZHANG  Z H,  et al. Hydrogenation of
                 369: 386-393.                                     levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al 2O 3
            [5]   PINTO B P, FORTUNA A L L, CARDOSO C P, et al. Hydrogenation   supported Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59.
                 of levulinic acid (LA) to  γ-valerolactone (GVL) over  Ni-Mo/C   [24]  GUPTA S S R, KANTAM M L. Selective hydrogenation of levulinic
                 catalysts and water-soluble solvent  systems[J]. Catalysis Letters,   acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst[J].
                 2017, 147(3): 751-757.                            Catalysis Today, 2018, 309: 189-194.
            [6]   LIU H,  CAO  X J, TANG X,  et al. Choline chloride-promoted   [25]  YU J J, JIANG Z, ZHU  L, et al. Adsorption/desorption studies of
                 efficient solvent-free hydrogenation  of biomass-derived levulinic   NO x on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like
                 acid to gamma-valerolactone over Ru/C[J]. Green Chemistry, 2021,   compounds[J]. The Journal of Physical Chemistry B, 2006, 110(9):
                 23(5): 1983-1988.                                 4291-4300.
            [7]   MANZER L E. Catalytic synthesis of α-methylene-γ-valerolactone: A   [26]  YAO S X, WANG X C, JIANG Y J, et al. One-step conversion of
                 biomass-derived acrylic monomer[J]. Applied Catalysis A: General,   biomass-derived 5-hydroxymethylfurfural to 1, 2, 6-hexanetriol over
                 2004, 272 (1/2): 249-256.                         Ni-Co-Al mixed oxide catalysts under  mild conditions[J]. ACS
            [8]   LUO W H, DEKA U, BEALE  U M,  et al. Ruthenium-catalyzed   Sustainable Chemistry & Engineering, 2014, 2(2): 173-180.
                 hydrogenation of levulinic acid: Influence of the support and solvent   [27]  ZHAO  L, MU X  L, LIU T S,  et al. Bimetallic Ni-Co catalysts
                 on catalyst selectivity and stability[J]. Journal  of Catalysis, 2013,   supported on Mn-Al oxide for selective catalytic CO hydrogenation
                 301(5): 175-186.                                  to higher alcohols[J].  Catalysis Science &  Technology, 2018, 8(8):
            [9]   FTOUNI J, MURILLO A, GORACHEV A, et al. ZrO 2 is preferred   2066-2076.
                 over TiO 2 as support for the Ru-catalyzed hydrogenation of levulinic   [28]  GABROVSKA M, EDREVA-KARDJIEVA R, TENCHEV K, et al.
                 acid to γ-valerolactone[J]. ACS Catalysis, 2016, 6(8): 5462-5472.   Effect of Co-content on the structure and activity of Co-Al
            [10]  FU J, SHENG D, LU X Y, et al. Hydrogenation of levulinic acid over   hydrotalcite-like materials as catalyst precursors for CO oxidation[J].
                 nickel catalysts  supported on aluminum oxide to prepare   Applied Catalysis A: General, 2011, 399(1/2): 242-251.
                 γ-valerolactone[J]. Catalysts, 2015, 6 (1): 6-15.   [29]  LONG X D, SUN P S, LI Z L,  et al. Magnetic Co/Al 2O 3 catalyst
            [11]  ALMEIDA L D, ROCHA A, RODRIGUES T, et al. Highly selective   derived  from hydrotalcite for  hydrogenation  of levulinic acid to
                 hydrogenation of levulinic acid catalyzed by Ru on TiO 2-SiO 2 hybrid   γ-valerolactone[J]. Chinese Journal of Catalysis, 2015, 36(9):
                 support[J]. Catalyst Today, 2020, 344: 158-165.   1512-1518.
            [12]  IBRAHIM M, POREDDY R, PHILIPPOT K, et al. Chemoselective   [30]  WU Z Y, JI W B, HU B C, et al. Partially oxidized Ni nanoparticles
                 hydrogenation of  arenes by PVP supported Rh  nanoparticles[J].   supported  on Ni-N co-doped carbon nanofibers as  bifunctional
                 Dalton Trans, 2016, 45(48): 19368-19373.          electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 51:
            [13]  YAN K, LAFEUR T, WU G S, et al. Highly selective production of   286-293.
                 value-added gamma-valerolactone from biomass-derived levulinic   [31]  ZHOU P, ZHANG Z H, JIANG L, et al. A versatile cobalt catalyst for
                 acid using the robust Pd nanoparticles[J]. Applied Catalysis A:   the reductive amination of carbonyl compounds with nitro compounds by
                 General, 2013, 468: 52-58.                        transfer hydrogenation[J]. Applied Catalysis B: Environmental, 2017,
            [14]  LU Y W, TANG Q H, WANG Y X, et al. Synergy in Sn-Mn oxide   210: 522-532.
                 boosting  the hydrogenation catalysis of supported Pt  nanoparticles   [32]  JIANG X C, LI H M, LI S L, et al. Metal-organic framework-derived
                 for selective conversion of levulinic acid[J]. Applied Catalysis B:   Ni-Co alloy@carbon microspheres as high-performance counter
                 Environmental, 2022, 300: 120746.                 electrode catalysts for dye-sensitized solar cells[J]. Chemical Engineering
            [15]  LANDENNA  L, VILLA A,  ZANELLA R,  et al. Gold-iridium   Journal, 2018, 334: 419-431.
                 catalysts for the hydrogenation of  biomass derived products[J].   [33]  ZENG L M, CUI X Z, CHEN L S, et al. Non-noble bimetallic alloy
                 Chinese Journal of Catalysis, 2016, 37(10): 1771-1775.   encased in nitrogen-doped nanotubes as a highly active and durable
            [16]  HUANG X M, LIU K,  VRIJBURG  W L,  et al. Hydrogenation of   electrocatalyst for oxygen reduction reaction[J]. Carbon, 2017, 114:
                 levulinic acid to  γ-valerolactone over  Fe-Re/TiO 2 catalysts[J].   347-355.
                 Applied Catalysis B: Environmental, 2020, 278: 119314.   [34]  DING J T, WANG P, JI S, et al. Mesoporous nickel selenide N-doped
            [17]  KOLEY P,  RAO  B S, SHIT S C,  et al. One-pot conversion of   carbon as a robust electrocatalyst for overall water splitting[J].
                 levulinic acid into gamma-valerolactone over a stable Ru   Electrochimica Acta, 2019, 300: 93-101.
                 tungstosphosphoric acid catalyst[J]. Fuel, 2021, 289: 119900.               (下转第 2063 页)
   140   141   142   143   144   145   146   147   148   149   150