Page 17 - 《精细化工》2023年第9期
P. 17
第 9 期 慕佳琪,等: 应用于烟气中 CO 2 捕集的固体吸附材料研究进展 ·1865·
法在工业化领域推广使用的主要障碍。吸附材料的 Fine Chemicals (精细化工), 2023, 40(1): 1-9.
[5] MA Y T (马宇彤), CONG S G (丛树阁), HU Y F (胡云峰), et al.
耐水性和低压条件下吸附性能的提升是未来仍然需
Research progress in adsorption and separation of carbon dioxide
要攻克的难题。复合型材料集优的思路和材料表面 from natural gas by adsorption materials[J]. Energy Chemical
修饰(杂原子掺杂和胺基功能化)是解决上述问题 Industry (能源化工), 2017, 38(6): 34-37.
[6] XU Z K (许志康). Study on preparation, modification and molding
的较为可行的方案。 of sodium based CO 2 solid adsorbent[D]. Nanjing: Southeast
(2)提高导热速率和低浓度二氧化碳条件下材 University (东南大学), 2019.
[7] WANG P (王芃), HU Y F (胡云峰). Research progress of CO 2
料的吸附速率也是提升材料吸附性能的重要方向。 separation methods[J]. Science & Technology in Chemical Industry
应开发出兼备热力学和动力学优势的固体吸附材 (化工科技), 2019, 27(2): 62-65.
[8] HUI W W (惠武卫), JI C M (姬存民), ZHAO H N (赵合楠), et al.
料,在提升低压条件下材料吸附容量的同时强化材 Research progress of low concentration CO 2 capture technology[J].
料内部的传热传质过程。 Natural Gas Chemical Industry (天然气化工-C1 化学与化工), 2022,
(3)现研究吸附材料多为粉末状,难以大量应 47(4): 19-25.
[9] ZHOU Z Y (周忠昀). Study on modification of high temperature
用于实际工程。应着眼工业应用实际,开发出可适 lithium based adsorbent and Its adsorption performance for low
合大规模生产的成型吸附材料,如颗粒状或柱状等, concentration carbon dioxide[D]. Xuzhou: China University of
Mining and Technology (中国矿业大学), 2018.
增大吸附材料与二氧化碳的单位接触面积。 [10] GARCIA J A, VILLEN M V, RODRIGUEZ J M, et al. Technical
(4)现有文献对于吸附材料的长期稳定性测试 analysis of CO 2 capture pathways and technologies[J]. Journal of
Environmental Chemical Engineering, 2022, 10(5): 108470.
数据较少。后续研究应加强长期稳定性测试,用实 [11] JIN Y R (金彦任), HUANG Z X (黄振兴). Adsorption and pore size
验数据为工程实际提供指导。 distribution[M]. Beijing: National Defense Industry Press (国防工业
出版社), 2015.
(5)再生过程的驱动能量来源尤为关键。可考
[12] WEN H (温翯), HAN W (韩伟), CHE C X (车春霞), et al. Progress
虑充分利用电厂中的余热等热量与固体吸附法捕集 in post combustion carbon dioxide capture technology and
二氧化碳技术相结合,降低再生过程的能耗,提高 application[J]. Fine Chemicals (精细化工), 2022, 39(8): 1584-1596.
[13] TAN W Z (谭文泽), SONG Q F (宋琼芳), CHEN X Q (陈学琴),
能源的利用率。 et al. Research progress of carbon dioxide solid adsorbent materials
(6)新型吸附材料的结构和吸附性能的构效关 [J]. Chinese Journal of Colloid & Polymer (胶体与聚合物), 2020, 38
(2): 90-94.
系研究正处于初始阶段,结构特征与动力学特性和 [14] JIANG X N (姜孝男), XU G (徐刚), CHEN W X (陈卫祥). Synthesis
热力学性质之间的影响机制也有待进一步探究。 and electrochemical lithium storage performance of Z-CoS 2-MoS 2/
rGO[J]. Journal of Zhejiang University (Engineering Science) (浙江
随着社会发展的不断进步,人们越来越认识到
大学学报: 工程版), 2022, 56(1): 152-160.
环保和可持续发展的重要性。越来越多的研究人员 [15] SEABRA R, RIBEIRO A M, GLEICHMANN K, et al. Adsorption
equilibrium and kinetics of carbon dioxide, methane and nitrogen on
致力于研发兼顾性能、环境效益和经济效益的吸附
binderless zeolite 4A adsorbents[J]. Microporous and Mesoporous
产品,未来固体吸附法捕集二氧化碳的重点应集中 Materials, 2019, 277: 105-114.
于环保、高效、低成本的吸附材料的开发和推广以 [16] ZHENG X X (郑修新), ZHANG X Y (张晓云), YU Q N (余青霓),
et al. Research progress of CO 2 absorbing materials[J]. Progress in
及低能耗再生方式的创新。在明确材料吸附性能的 Chemistry (化学进展), 2012, 31(2): 360-366.
影响因素以及结构与吸附性能之间的构效关系基础 [17] CHEN J (陈健). Adsorption and separation process and engineering
[M]. Beijing: Science Press (科学出版社), 2022.
上,可以通过调节吸附材料制备过程的参数和改性 [18] SPINNER N S, VEGA J A, MUSTAIN W E. Recent progress in the
方法来实现结构和表面性质的“定向”改变。性能 electrochemical conversion and utilization of CO 2[J]. Catalysis
Science & Technology, 2012, 2: 19-28.
集优的复合型材料将是提升二氧化碳吸附性能的有
[19] PAVANI D D, SIMING Y, AVANTHI D I, et al. Biochar-based
效手段,这会促进环保、高效、低成本吸附材料的 adsorbents for carbon dioxide capture: A critical review[J].
开发和推广使用,助力中国早日实现“碳中和、碳 Renewable and Sustainable Energy Reviews, 2020, 119: 109582.
[20] MARTI A M, VENNA S R, ROTH E A, et al. Simple fabrication
达峰”目标愿景。 method for mixed matrix membranes with in situ MOF growth for
gas separation[J/OL]. ACS Applied Materials & Interfaces, 2018.
参考文献: DOI: 10.1021/acsami.8b06592.
[21] LIU G P, CADIAU A, LIU Y, et al. Enabling fluorinated MOF-based
[1] Company B P. BP statistical review of world energy[EB/OL]. membranes for simultaneous removal of H 2S and CO 2 from natural
London: British Petroleum Company, 2022. www.bp.com.
[2] LEE S, PARK S. A review on solid adsorbents for carbon dioxide gas[J]. Angewandte Chemie, 2018, 45: 08991.
capture[J]. Journal of Industrial and Engineering Chemistry, 2015, [22] HAO L X (郝兰霞), ZHANG G J (张国杰), JIA Y (贾永), et al.
Research progress on CO 2 adsorption of solid porous materials[J].
23: 1-11.
Modern Chemical Industry (现代化工), 2016, (7): 29-33.
[3] LEUNG D, CARAMANNA G, MAROTO-VALER M M. An [23] HE L M (何利梅), JIANG W L (姜伟丽), LI J C (李继聪). Research
overview of current status of carbon dioxide capture and storage progress of CO 2 adsorption materials[J]. Petrochemical Technology
technologies[J]. Renewable & Sustainable Energy Review, 2014, 39:
426-443. (石油化工), 2022, 51(1): 83-91.
[4] ZHAO R L (赵然磊), MA W T (马文涛), XU X (徐晓), et al. [24] MULGUNDMATH V P, TEZEL F H, SAATCIOGLU T, et al.
Research progress of carbon dioxide capture chemical absorbents[J]. Adsorption and separation of CO 2/N 2 and CO 2/CH 4 by 13X zeolite
[J]. The Canadian Journal of Chemical Engineering, 2012, 90(3):