Page 17 - 《精细化工》2023年第9期
P. 17

第 9 期                   慕佳琪,等:  应用于烟气中 CO 2 捕集的固体吸附材料研究进展                               ·1865·


            法在工业化领域推广使用的主要障碍。吸附材料的                                 Fine Chemicals (精细化工), 2023, 40(1): 1-9.
                                                               [5]   MA Y T (马宇彤), CONG S G (丛树阁), HU Y F (胡云峰), et al.
            耐水性和低压条件下吸附性能的提升是未来仍然需
                                                                   Research progress in adsorption and  separation of carbon dioxide
            要攻克的难题。复合型材料集优的思路和材料表面                                 from natural gas  by adsorption materials[J]. Energy  Chemical
            修饰(杂原子掺杂和胺基功能化)是解决上述问题                                 Industry (能源化工), 2017, 38(6): 34-37.
                                                               [6]   XU Z K (许志康). Study on preparation, modification and molding
            的较为可行的方案。                                              of sodium based CO 2 solid adsorbent[D]. Nanjing: Southeast
                (2)提高导热速率和低浓度二氧化碳条件下材                              University (东南大学), 2019.
                                                               [7]   WANG P (王芃), HU Y  F  (胡云峰). Research progress of CO 2
            料的吸附速率也是提升材料吸附性能的重要方向。                                 separation methods[J]. Science & Technology in Chemical Industry
            应开发出兼备热力学和动力学优势的固体吸附材                                  (化工科技), 2019, 27(2): 62-65.
                                                               [8]   HUI W W (惠武卫), JI C M (姬存民), ZHAO H N (赵合楠), et al.
            料,在提升低压条件下材料吸附容量的同时强化材                                 Research progress of low concentration CO 2 capture technology[J].
            料内部的传热传质过程。                                            Natural Gas Chemical Industry (天然气化工-C1 化学与化工), 2022,
                (3)现研究吸附材料多为粉末状,难以大量应                              47(4): 19-25.
                                                               [9]   ZHOU  Z Y (周忠昀). Study on modification of  high temperature
            用于实际工程。应着眼工业应用实际,开发出可适                                 lithium based adsorbent and Its adsorption  performance for  low
            合大规模生产的成型吸附材料,如颗粒状或柱状等,                                concentration carbon dioxide[D]. Xuzhou: China University of
                                                                   Mining and Technology (中国矿业大学), 2018.
            增大吸附材料与二氧化碳的单位接触面积。                                [10]  GARCIA J  A, VILLEN M  V, RODRIGUEZ J M,  et al. Technical
                (4)现有文献对于吸附材料的长期稳定性测试                              analysis of CO 2 capture pathways and technologies[J]. Journal  of
                                                                   Environmental Chemical Engineering, 2022, 10(5): 108470.
            数据较少。后续研究应加强长期稳定性测试,用实                             [11]  JIN Y R (金彦任), HUANG Z X (黄振兴). Adsorption and pore size
            验数据为工程实际提供指导。                                          distribution[M]. Beijing: National Defense Industry Press (国防工业
                                                                   出版社), 2015.
                (5)再生过程的驱动能量来源尤为关键。可考
                                                               [12]  WEN H (温翯), HAN W (韩伟), CHE C X (车春霞), et al. Progress
            虑充分利用电厂中的余热等热量与固体吸附法捕集                                 in post combustion carbon dioxide  capture technology and
            二氧化碳技术相结合,降低再生过程的能耗,提高                                 application[J]. Fine Chemicals (精细化工), 2022, 39(8): 1584-1596.
                                                               [13]  TAN W Z (谭文泽), SONG Q F (宋琼芳), CHEN X  Q (陈学琴),
            能源的利用率。                                                et al. Research progress of carbon dioxide solid adsorbent materials
                (6)新型吸附材料的结构和吸附性能的构效关                              [J]. Chinese Journal of Colloid & Polymer (胶体与聚合物), 2020, 38
                                                                   (2): 90-94.
            系研究正处于初始阶段,结构特征与动力学特性和                             [14]  JIANG X N (姜孝男), XU G (徐刚), CHEN W X (陈卫祥). Synthesis
            热力学性质之间的影响机制也有待进一步探究。                                  and electrochemical lithium storage performance of  Z-CoS 2-MoS 2/
                                                                   rGO[J]. Journal of Zhejiang University (Engineering Science) (浙江
                 随着社会发展的不断进步,人们越来越认识到
                                                                   大学学报:  工程版), 2022, 56(1): 152-160.
            环保和可持续发展的重要性。越来越多的研究人员                             [15]  SEABRA R, RIBEIRO A M, GLEICHMANN K, et al. Adsorption
                                                                   equilibrium and kinetics of carbon dioxide, methane and nitrogen on
            致力于研发兼顾性能、环境效益和经济效益的吸附
                                                                   binderless zeolite 4A adsorbents[J]. Microporous and Mesoporous
            产品,未来固体吸附法捕集二氧化碳的重点应集中                                 Materials, 2019, 277: 105-114.
            于环保、高效、低成本的吸附材料的开发和推广以                             [16]  ZHENG X X (郑修新), ZHANG X Y (张晓云), YU Q N (余青霓),
                                                                   et al. Research progress of CO 2 absorbing materials[J]. Progress in
            及低能耗再生方式的创新。在明确材料吸附性能的                                 Chemistry (化学进展), 2012, 31(2): 360-366.
            影响因素以及结构与吸附性能之间的构效关系基础                             [17]  CHEN J (陈健). Adsorption and separation process and engineering
                                                                   [M]. Beijing: Science Press (科学出版社), 2022.
            上,可以通过调节吸附材料制备过程的参数和改性                             [18]  SPINNER N S, VEGA J A, MUSTAIN W E. Recent progress in the
            方法来实现结构和表面性质的“定向”改变。性能                                 electrochemical conversion and  utilization of CO 2[J]. Catalysis
                                                                   Science & Technology, 2012, 2: 19-28.
            集优的复合型材料将是提升二氧化碳吸附性能的有
                                                               [19]  PAVANI D D, SIMING Y, AVANTHI D I,  et al.  Biochar-based
            效手段,这会促进环保、高效、低成本吸附材料的                                 adsorbents  for carbon dioxide capture: A critical review[J].
            开发和推广使用,助力中国早日实现“碳中和、碳                                 Renewable and Sustainable Energy Reviews, 2020, 119: 109582.
                                                               [20]  MARTI A M,  VENNA S R,  ROTH  E A,  et al. Simple fabrication
            达峰”目标愿景。                                               method for mixed matrix membranes with in situ MOF growth for
                                                                   gas separation[J/OL]. ACS Applied Materials & Interfaces, 2018.
            参考文献:                                                  DOI: 10.1021/acsami.8b06592.
                                                               [21]  LIU G P, CADIAU A, LIU Y, et al. Enabling fluorinated MOF-based
            [1]   Company B P. BP statistical review of world energy[EB/OL].   membranes for simultaneous removal of H 2S and CO 2 from natural
                 London: British Petroleum Company, 2022. www.bp.com.
            [2]   LEE S, PARK S. A review on solid adsorbents for carbon dioxide   gas[J]. Angewandte Chemie, 2018, 45: 08991.
                 capture[J]. Journal  of Industrial and Engineering Chemistry, 2015,   [22]  HAO L  X (郝兰霞), ZHANG G J (张国杰), JIA  Y (贾永),  et al.
                                                                   Research progress  on CO 2 adsorption of  solid  porous materials[J].
                 23: 1-11.
                                                                   Modern Chemical Industry (现代化工), 2016, (7): 29-33.
            [3]   LEUNG D, CARAMANNA G, MAROTO-VALER  M M. An   [23]  HE L M (何利梅), JIANG W L (姜伟丽), LI J C (李继聪). Research
                 overview of current status of carbon  dioxide capture and storage   progress of  CO 2  adsorption materials[J]. Petrochemical Technology
                 technologies[J]. Renewable & Sustainable Energy Review, 2014, 39:
                 426-443.                                          (石油化工), 2022, 51(1): 83-91.
            [4]   ZHAO R  L (赵然磊), MA W T (马文涛), XU X (徐晓),  et al.   [24]  MULGUNDMATH V P, TEZEL F  H, SAATCIOGLU T,  et al.
                 Research progress of carbon dioxide capture chemical absorbents[J].   Adsorption and separation of CO 2/N 2 and CO 2/CH 4 by 13X zeolite
                                                                   [J]. The Canadian Journal  of Chemical Engineering, 2012, 90(3):
   12   13   14   15   16   17   18   19   20   21   22