Page 203 - 《精细化工》2023年第9期
P. 203

第 9 期                 陈锦富,等: CuFe 2 O 4 /硅藻土复合材料活化过一硫酸盐降解酸性橙 7                          ·2051·


            [29]  LI Z Q, MA S L, XU S J, et al. Heterogeneous catalytic degradation   Advanced Energy and Sustainability Research, 2021, 2(8): 2100038.
                 of organic pollutants by peroxymonosulfate activated with nitrogen   [35]  AHMADI M, GHANBARI F. Combination  of UVC-LEDs and
                 doped graphene oxide loaded CuFe 2O 4[J]. Colloids and Surfaces A:   ultrasound  for peroxymonosulfate activation to degrade synthetic
                 Physicochemical and Engineering Aspects, 2019, 577: 202-212.   dye: Influence of promotional and inhibitory agents and application
            [30]  YAO Y J, LU F, ZHU  Y P,  et al. Magnetic core-shell CuFe 2O 4@   for real wastewater[J]. Environmental Science and Pollution Research,
                 C 3N 4 hybrids for visible light photocatalysis of orange  Ⅱ[J]. Journal of   2018, 25(6): 6003-6014.
                 Hazardous Materials, 2015, 297: 224-233.      [36]  ZHANG X W, DUAN J J, TAN Y, et al. Insight into peroxymonosulfate
            [31]  LI Z L, WANG  M, JIN C Y,  et al. Synthesis  of novel Co 3O 4   assisted photocatalysis over Fe 2O 3 modified TiO 2/diatomite composite
                 hierarchical porous nanosheets via corn stem and MOF-Co templates   for  highly efficient removal of ciprofloxacin[J]. Separation and
                 for efficient oxytetracycline degradation  by peroxymonosulfate   Purification Technology, 2022, 293: 121123.
                 activation[J]. Chemical Engineering Journal, 2020, 392: 123789.   [37]  BAI R, YAN W F, XIAO Y, et al. Acceleration of peroxymonosulfate
            [32]  WANG B Y,  LI Q  Q, LV Y,  et al. Insights into the mechanism of   decomposition by a magnetic MoS 2/CuFe 2O 4 heterogeneous catalyst
                 peroxydisulfate activated by magnetic spinel CuFe 2O 4/SBC as a   for rapid degradation of fluoxetine[J]. Chemical Engineering Journal,
                 heterogeneous catalyst for  bisphenol S degradation[J]. Chemical   2020, 397: 125501.
                 Engineering Journal, 2021, 416: 129162.       [38]  LI Z L, GUO  C  S, LYU J C,  et al.  Tetracycline degradation by
            [33]  GOLSHAN M, KAKAVANDI B, AHMADI M, et al. Photocatalytic   persulfate activated with magnetic Cu/CuFe 2O 4 composite: Efficiency,
                 activation of peroxymonosulfate by TiO 2 anchored on cupper ferrite   stability, mechanism and degradation pathway[J]. Journal of hazardous
                 (TiO 2@CuFe 2O 4) into 2,4-D degradation: Process feasibility, mechanism   materials, 2019, 373: 85-96.
                 and pathway[J]. Journal of Hazardous Materials, 2018, 359: 325-337.   [39]  TAN Y,  LI C  Q,  SUN Z M,  et al. Natural diatomite  mediated
            [34]  GUO S, LI C,  YOU L M,  et al. Facile synthesis of  AgFeO 2-   spherically monodispersed CoFe 2O 4 nanoparticles for efficient catalytic
                 decorated CaCO 3  with enhanced catalytic activity in activation  of   oxidation of bisphenol A through activating peroxymonosulfate[J].
                 peroxymonosulfate for efficient degradation of organic pollutants[J].   Chemical Engineering Journal, 2020, 388: 124386.




            (上接第 1894 页)                                           near-infrared fluorescence imaging  technology in the second
                                                                   transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659.
            [52]  JINNAI K, KABE R,  LIN Z S,  et al. Organic long-persistent   [56]  SHI H F, SUN H B, YANG H R, et al. Cationic polyfluorenes with
                 luminescence stimulated by visible light in p-type systems based on   phosphorescent iridium(Ⅲ) complexes for time-resolved luminescent
                 organic photoredox catalyst dopants[J]. Nature Materials, 2021,   biosensing and  fluorescence lifetime imaging[J]. Advanced
                 21(3): 338-344.                                   Functional Materials, 2013, 23(26): 3268-3276.
            [53]  DENG Y C, LI P, LI J  T,  et al. Color-tunable aqueous room-   [57]  CHEN  X F, XU  C, WANG T,  et al. Versatile room-temperature
                 temperature phosphorescence supramolecular assembly[J]. ACS   phosphorescent  materials  prepared  from  N-substituted
                 Applied Materials & Interfaces, 2021, 13(12): 14407-14416.   naphthalimides: Emission enhancement and chemical conjugation[J].
            [54]  XU T Q, WU P, LOU L Y, et al. Vitrimer enhanced carbazole-based   Angewandte Chemie-International Edition, 2016, 55(34): 9872-9876.
                 organic room-temperature phosphorescent materials[J]. New Journal   [58]  WANG T T, SONG Y K, LIU M,  et al. Electrospinning enables
                 of Chemistry, 2022, 46(1): 276-281.               flexibility of organic long-persistent luminescence  crystals[J]. Dyes
            [55]  LI C  Y, WANG Q B. Challenges and opportunities for intravital   and Pigments, 2022, 207: 110734.




            (上接第 2033 页)                                           control of adhesion between emulsion drops stabilized by thermally
            [4]   DICKINSON E. Biopolymer-based particles as stabilizing agents for   sensitive soft colloidal particles[J]. Langmuir: The ACS Journal of
                 emulsions and foams[J]. Food hydrocolloids, 2017, 68(7): 219-231.   Surfaces and Colloids, 2012, 28(8): 3744-3755.
            [5]   JIANG W L, FU Q J, YAO B J, et al. Smart pH-responsive polymer-   [11]  LIU W Z (刘魏征), WANG J (王君), GAO C Q (高超权),  et al.
                 tethered and Pd  NP-loaded NMOF as the Pickering interfacial   Preparation and properties of glucose responsive GO/nanocomposite
                 catalyst for one-pot cascade biphasic reaction[J]. ACS Applied   hydrogels[J]. Journal of Chemical Engineering of Chinese Universities
                 Materials & Interfaces, 2017, 41(9): 36438-36446.   (高校化学工程学报), 2021, 35(3): 513-519.
            [6]   TSUJI S, KAWAGUCHI H.  Thermosensitive Pickering  emulsion   [12]  QI C, ZHANG X G, FENG C, et al. Effect of GO agglomeration on
                 stabilized by poly(N-isopropylacrylamide)-carrying particles[J].   the mechanical properties of graphene oxide and nylon 66 composites
                 Langmuir, 2008, 24(7): 3300-3305.                 and micromechanical analysis[J]. Polymer Composites, 2022, 43(11):
            [7]   TATRY M  C, QIU Y T,  LAPEYRE V,  et al. Sugar-responsive   8356-8367.
                 Pickering emulsions mediated by  switching hydrophobicity in   [13]  ESMAIL S, MEHRAN P. Direct and reverse desymmetrization process
                 microgels[J]. Journal of Colloid and  Interface Science, 2020, 561:   in O/W Pickering emulsions to produce hollow graphene oxide Janus
                 481-493.                                          micro/nano-particles[J]. Colloids and  Surfaces A: Physicochemical
            [8]   SMITHMYER M E, DENG C C, CASSEL S E, et al. Self-healing   and Engineering Aspects, 2021, 619(6): 126522.
                 boronic acid-based hydrogels for 3D co-cultures[J]. ACS Macro   [14]  WU C, HOU D S, YIN B, et al. Synthesis and application of new
                 Letters, 2018, 7(9): 1105-1110.                   core-shell structure via Pickering emulsion polymerization stabilized
            [9]  ZHANG N (张聂), LU X J (卢小菊), MENG Y (孟鸳). Mechanical   by graphene oxide[J]. Composites Part B: Engineering, 2022,
                 properties of graphene oxide enhanced polyacrylamide hydrogels[J].   247(11): 110285.
                 Polymer Materials Science & Engineering (高分子材料科学与工  [15]  PARINAZ A, LUCIG A, WALEED P, et al. Emulsions undergoing
                 程), 2019, 35(9): 53-61.                           phase transition: Effect of emulsifier type  and concentration[J].
            [10]  DESTRIBATS M, LAPEYRE  V, SELLIER E,  et al. Origin and   Journal of Colloid and Interface Science, 2022, 617(7): 214-223.
   198   199   200   201   202   203   204   205   206   207   208