Page 203 - 《精细化工》2023年第9期
P. 203
第 9 期 陈锦富,等: CuFe 2 O 4 /硅藻土复合材料活化过一硫酸盐降解酸性橙 7 ·2051·
[29] LI Z Q, MA S L, XU S J, et al. Heterogeneous catalytic degradation Advanced Energy and Sustainability Research, 2021, 2(8): 2100038.
of organic pollutants by peroxymonosulfate activated with nitrogen [35] AHMADI M, GHANBARI F. Combination of UVC-LEDs and
doped graphene oxide loaded CuFe 2O 4[J]. Colloids and Surfaces A: ultrasound for peroxymonosulfate activation to degrade synthetic
Physicochemical and Engineering Aspects, 2019, 577: 202-212. dye: Influence of promotional and inhibitory agents and application
[30] YAO Y J, LU F, ZHU Y P, et al. Magnetic core-shell CuFe 2O 4@ for real wastewater[J]. Environmental Science and Pollution Research,
C 3N 4 hybrids for visible light photocatalysis of orange Ⅱ[J]. Journal of 2018, 25(6): 6003-6014.
Hazardous Materials, 2015, 297: 224-233. [36] ZHANG X W, DUAN J J, TAN Y, et al. Insight into peroxymonosulfate
[31] LI Z L, WANG M, JIN C Y, et al. Synthesis of novel Co 3O 4 assisted photocatalysis over Fe 2O 3 modified TiO 2/diatomite composite
hierarchical porous nanosheets via corn stem and MOF-Co templates for highly efficient removal of ciprofloxacin[J]. Separation and
for efficient oxytetracycline degradation by peroxymonosulfate Purification Technology, 2022, 293: 121123.
activation[J]. Chemical Engineering Journal, 2020, 392: 123789. [37] BAI R, YAN W F, XIAO Y, et al. Acceleration of peroxymonosulfate
[32] WANG B Y, LI Q Q, LV Y, et al. Insights into the mechanism of decomposition by a magnetic MoS 2/CuFe 2O 4 heterogeneous catalyst
peroxydisulfate activated by magnetic spinel CuFe 2O 4/SBC as a for rapid degradation of fluoxetine[J]. Chemical Engineering Journal,
heterogeneous catalyst for bisphenol S degradation[J]. Chemical 2020, 397: 125501.
Engineering Journal, 2021, 416: 129162. [38] LI Z L, GUO C S, LYU J C, et al. Tetracycline degradation by
[33] GOLSHAN M, KAKAVANDI B, AHMADI M, et al. Photocatalytic persulfate activated with magnetic Cu/CuFe 2O 4 composite: Efficiency,
activation of peroxymonosulfate by TiO 2 anchored on cupper ferrite stability, mechanism and degradation pathway[J]. Journal of hazardous
(TiO 2@CuFe 2O 4) into 2,4-D degradation: Process feasibility, mechanism materials, 2019, 373: 85-96.
and pathway[J]. Journal of Hazardous Materials, 2018, 359: 325-337. [39] TAN Y, LI C Q, SUN Z M, et al. Natural diatomite mediated
[34] GUO S, LI C, YOU L M, et al. Facile synthesis of AgFeO 2- spherically monodispersed CoFe 2O 4 nanoparticles for efficient catalytic
decorated CaCO 3 with enhanced catalytic activity in activation of oxidation of bisphenol A through activating peroxymonosulfate[J].
peroxymonosulfate for efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2020, 388: 124386.
(上接第 1894 页) near-infrared fluorescence imaging technology in the second
transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659.
[52] JINNAI K, KABE R, LIN Z S, et al. Organic long-persistent [56] SHI H F, SUN H B, YANG H R, et al. Cationic polyfluorenes with
luminescence stimulated by visible light in p-type systems based on phosphorescent iridium(Ⅲ) complexes for time-resolved luminescent
organic photoredox catalyst dopants[J]. Nature Materials, 2021, biosensing and fluorescence lifetime imaging[J]. Advanced
21(3): 338-344. Functional Materials, 2013, 23(26): 3268-3276.
[53] DENG Y C, LI P, LI J T, et al. Color-tunable aqueous room- [57] CHEN X F, XU C, WANG T, et al. Versatile room-temperature
temperature phosphorescence supramolecular assembly[J]. ACS phosphorescent materials prepared from N-substituted
Applied Materials & Interfaces, 2021, 13(12): 14407-14416. naphthalimides: Emission enhancement and chemical conjugation[J].
[54] XU T Q, WU P, LOU L Y, et al. Vitrimer enhanced carbazole-based Angewandte Chemie-International Edition, 2016, 55(34): 9872-9876.
organic room-temperature phosphorescent materials[J]. New Journal [58] WANG T T, SONG Y K, LIU M, et al. Electrospinning enables
of Chemistry, 2022, 46(1): 276-281. flexibility of organic long-persistent luminescence crystals[J]. Dyes
[55] LI C Y, WANG Q B. Challenges and opportunities for intravital and Pigments, 2022, 207: 110734.
(上接第 2033 页) control of adhesion between emulsion drops stabilized by thermally
[4] DICKINSON E. Biopolymer-based particles as stabilizing agents for sensitive soft colloidal particles[J]. Langmuir: The ACS Journal of
emulsions and foams[J]. Food hydrocolloids, 2017, 68(7): 219-231. Surfaces and Colloids, 2012, 28(8): 3744-3755.
[5] JIANG W L, FU Q J, YAO B J, et al. Smart pH-responsive polymer- [11] LIU W Z (刘魏征), WANG J (王君), GAO C Q (高超权), et al.
tethered and Pd NP-loaded NMOF as the Pickering interfacial Preparation and properties of glucose responsive GO/nanocomposite
catalyst for one-pot cascade biphasic reaction[J]. ACS Applied hydrogels[J]. Journal of Chemical Engineering of Chinese Universities
Materials & Interfaces, 2017, 41(9): 36438-36446. (高校化学工程学报), 2021, 35(3): 513-519.
[6] TSUJI S, KAWAGUCHI H. Thermosensitive Pickering emulsion [12] QI C, ZHANG X G, FENG C, et al. Effect of GO agglomeration on
stabilized by poly(N-isopropylacrylamide)-carrying particles[J]. the mechanical properties of graphene oxide and nylon 66 composites
Langmuir, 2008, 24(7): 3300-3305. and micromechanical analysis[J]. Polymer Composites, 2022, 43(11):
[7] TATRY M C, QIU Y T, LAPEYRE V, et al. Sugar-responsive 8356-8367.
Pickering emulsions mediated by switching hydrophobicity in [13] ESMAIL S, MEHRAN P. Direct and reverse desymmetrization process
microgels[J]. Journal of Colloid and Interface Science, 2020, 561: in O/W Pickering emulsions to produce hollow graphene oxide Janus
481-493. micro/nano-particles[J]. Colloids and Surfaces A: Physicochemical
[8] SMITHMYER M E, DENG C C, CASSEL S E, et al. Self-healing and Engineering Aspects, 2021, 619(6): 126522.
boronic acid-based hydrogels for 3D co-cultures[J]. ACS Macro [14] WU C, HOU D S, YIN B, et al. Synthesis and application of new
Letters, 2018, 7(9): 1105-1110. core-shell structure via Pickering emulsion polymerization stabilized
[9] ZHANG N (张聂), LU X J (卢小菊), MENG Y (孟鸳). Mechanical by graphene oxide[J]. Composites Part B: Engineering, 2022,
properties of graphene oxide enhanced polyacrylamide hydrogels[J]. 247(11): 110285.
Polymer Materials Science & Engineering (高分子材料科学与工 [15] PARINAZ A, LUCIG A, WALEED P, et al. Emulsions undergoing
程), 2019, 35(9): 53-61. phase transition: Effect of emulsifier type and concentration[J].
[10] DESTRIBATS M, LAPEYRE V, SELLIER E, et al. Origin and Journal of Colloid and Interface Science, 2022, 617(7): 214-223.