Page 61 - 《精细化工》2023年第9期
P. 61
第 9 期 雷 伟,等: 荧光硫量子点的制备及应用研究进展 ·1909·
applications[J]. Chemicals Communications (Camb), 2019, 55(86): glass-stabilized CsPbX 3 (X = Cl, Br, I) perovskite nanocrystals
13004-13007. triggered by upconverting Tm: KYb 2F 7 nanoparticles for high-level
[36] XIAO L, DU Q C, HUANG Y, et al. Rapid synthesis of sulfur nanodots anti-counterfeiting[J]. Chemical Engineering Journal, 2020, 395:
by one-step hydrothermal reaction for luminescence-based applications 125214.
[J]. ACS Applied Nano Materials, 2019, 2(10): 6622-6628. [55] SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally
[37] QIAO G X, LIU L, HAO X X, et al. Signal transduction from small activated exciton dissociation and recombination control the
particles: Sulfur nanodots featuring mercury sensing, cell entry organometal halide perovskite carrier dynamics[J]. Journal of
mechanism and in vitro tracking performance[J]. Chemical Engineering Physical Chemistry Letters, 2014, 5(13): 2189-2194.
Journal, 2020, 382: 122907. [56] YANG E L, ZANG Y J, SHEN Y F, et al. Quantum dots for
[38] DUAN Y X, TAN J S, HUANG Z M, et al. Facile synthesis of electrochemiluminescence bioanalysis[J]. Analytica Chimica Acta,
carboxymethyl cellulose sulfur quantum dots for live cell imaging 2022, 1209: 339140.
and sensitive detection of Cr(Ⅵ) and ascorbic acid[J]. Carbohydrate [57] CAO Z Y, SHU Y F, QIN H Y, et al. Quantum dots with highly
Polymers, 2020, 249: 116882. efficient, stable, and multicolor electrochemiluminescence[J]. ACS
[39] SONG Y H, TAN J S, WANG G, et al. Oxygen accelerated scalable Central Science, 2020, 6(7): 1129-1137.
synthesis of highly fluorescent sulfur quantum dots[J]. Chemical [58] LI X Y, XU Y, CHEN Y X, et al. Dual enhanced
Science, 2019, 11(3): 772-777. electrochemiluminescence of aminated Au@SiO 2/CdS quantum dot
[40] WANG Z G, WANG H G, XIONG Y, et al. Hydrogen peroxide superstructures: Electromagnetic field enhancement and chemical
assisted synthesis of highly luminescent sulfur quantum dots[J]. enhancement[J]. ACS Applied Materials & Interfaces, 2019, 11(4):
Angewandte Chemie International Edition, 2019, 58(21): 7040-7044. 4488-4499.
[41] LU W Y, WEI Z T, GAO G X, et al. Investigation on dynamic [59] LIU Z Y, QI W J, XU G B, et al. Recent advances in
changes in the morphology and fluorescence properties of sulfur electrochemiluminescence[J]. Chemical Society. Review, 2015, 10:
quantum dots[J]. Jounral of Physical Chemistry Letters, 2022, 3117-3142.
13(33): 7618-7623. [60] WANG X B, ZHAO Y Q, HUA Q, et al. An ultrasensitive
[42] LI Q L, SHI L X, DU K, et al. Copper-ion-assisted precipitation electrochemiluminescence biosensor for the detection of total
etching method for the luminescent enhanced assembling of sulfur bacterial count in environmental and biological samples based on a
quantum dots[J]. ACS Omega, 2020, 5(10): 5407-5411. novel sulfur quantum dot luminophore[J]. Analyst, 2022, 147(8):
[43] HU Z, DAI H Q, WEI X, et al. 49.25% efficient cyan emissive sulfur 1716-1721.
dots via a microwave-assisted route[J]. RSC Advances, 2020, 10(29): [61] WANG S, BAO X, GAO B, et al. A novel sulfur quantum dot for the
17266-17269. detection of cobalt ions and norfloxacin as a fluorescent "switch"[J].
[44] SHENG Y L, HUANG Z N, ZHONG Q, et al. Size-focusing results Dalton Transaction, 2019, 48(23): 8288-8296.
in highly photoluminescent sulfur quantum dots with a stable [62] CHEN D J, LI S X, ZHENG F Y. Water soluble sulphur quantum
+
emission wavelength[J]. Nanoscale, 2021, 13(4): 2519-2526. dots for selective Ag sensing based on the ion aggregation-induced
[45] WEI Z T, LU W Y, PAN C W, et al. Manipulating time-dependent photoluminescence enhancement[J]. Analytical Methods, 2016, 8(3):
size distribution of sulfur quantum dots and their fluorescence 632-636.
sensing for ascorbic acid[J]. Dalton Transcations, 2022, 51(26): [63] ZHAO J, FAN Z F. Using zinc ion-enhanced fluorescence of sulfur
10290-10297. quantum dots to improve the detection of the zinc(Ⅱ)-binding
[46] GAO P X, HUANG Z Y, TAN J S, et al. Efficient conversion of antifungal drug clioquinol[J]. Mikrochim Acta, 2019, 187(1): 3.
elemental sulfur to robust ultrabright fluorescent sulfur quantum dots [64] ZHANG H Q, LI Y F, LU H X, et al. A ratiometric fluorescence and
using sulfur-ethylenediamine precursor[J]. ACS Sustainable Chemistry & colorimetric dual-mode sensing platform based on sulfur quantum
2+
Engineering, 2022, 10(14): 4634-4641. dots and carbon quantum dots for selective detection of Cu [J].
[47] WANG Z G, ZHANG C C, WANG H G, et al. Two-step oxidation Analytical and Bioanalytical Chemistry, 2022, 414(7): 2471-2480.
synthesis of sulfur with a red aggregation-induced emission[J]. [65] FU L, WANG A W, XIE K F, et al. Electrochemical detection of
Angewandte Chemie International Edition, 2020, 59(25): 9997-10002. silver ions by using sulfur quantum dots modified gold electrode[J].
[48] HUANG Z Y (黄铮钰), HUANG Z M (黄泽明), ZHOU L (周立). Sensors and Actuators B: Chemical, 2020, 304: 127390.
Facile synthesis of highly fluorescent sulfur quantum dots for [66] TAN Q, AN X X, PAN S, et al. Hydrogen peroxide assisted synthesis
detection of 4-nitrophenol[J]. Chinese Journal of luminescence (发光 of sulfur quantum dots for the detection of chromium(Ⅵ) and
学报), 2022, 43(6): 952-960. ascorbic acid[J]. Spectrochimica Acta part A: Molecular and
[49] BAI Z W, SHEN L H, WEI J H, et al. Layered sulfur nanosheets Biomolecular Spectroscopy, 2021, 247: 119122.
prepared by assembly of sulfur quantum dots: implications for wide [67] MAO Y N (毛亚宁), WANG J (王军), GAO H Y (高环宇), et al.
optical absorption and multiwavelength photoluminescence[J]. ACS Progress in synthesis and sensing imaging of biomass-based carbon
Applied Nano Materials, 2020, 3(11): 10749-10756. quantum dots[J]. Chinese Journal of Analytical Chemistry (分析化
[50] LI L, YANG C, LI Y, et al. Sulfur quantum dot-based portable paper 学), 2021, 49(7): 1076-1088.
sensors for fluorometric and colorimetric dual-channel detection of [68] PEI G S, XIANG J Y, LV X W, et al. High-temperature heat capacity
cobalt[J]. Journal of Materials Science, 2020, 56(7): 4782-4796. and phase transformation kinetics of NaVO 3[J]. Journal of Alloys and
[51] YAN F Y, XU M, XU J P, et al. Facile synthesis of high-performance Compounds, 2019, 794: 465-472.
sulfur quantum dots via an effective ethylenediamine-assisted acceleration [69] ZHANG Y Z (张源哲), LIU Y H (刘宇豪), LU Y J (陆雨洁), et al.
strategy for fluorescent sensing[J]. Sensors and Actuators B: Chemical, Study on the spectral prediction of phosphor-coated white LED based
2022, 370: 132393. on partial least squares regression[J]. Spectroscopy and Spectral
[52] TAN J S, SONG Y H, DAI X J, et al. One-pot synthesis of robust Analysis (光谱学与光谱分析), 2022, 42(8): 2347-2352.
dendritic sulfur quantum dots for two-photon fluorescence imaging [70] ZHANG W Y, LIANG H D, QIN X Y, et al. Double-network
and "off-on" detection of hydroxyl radicals and ascorbic acid[J]. luminescent films constructed using sulfur quantum dots and
Nanoscale Advances, 2022, 4(13): 4035-4040. lanthanide complexes[J]. ACS Applied Materials Interfaces, 2022,
[53] KHAN S A, LI C, JALIL A, et al. Development of structure and 14(35): 40136-40144.
tuning ability of the luminescence of lead-free halide perovskite [71] WANG Y (王阳), HU P (胡珀), ZHOU S (周帅), et al. Anticounterfeiting
nanocrystals (NCs)[J]. Chemical Engineering Journal, 2021, 420: 127603. and security applications of rare-earth upconversion nanophosphors
[54] LIN J D, YANG C B, HUANG P. Photoluminescence tuning from [J]. Progress in Chemistry (化学进展), 2021, 33(7): 1221-1237.