Page 61 - 《精细化工》2023年第9期
P. 61

第 9 期                        雷   伟,等:  荧光硫量子点的制备及应用研究进展                                 ·1909·


                 applications[J]. Chemicals  Communications (Camb), 2019, 55(86):   glass-stabilized CsPbX 3  (X = Cl,  Br, I) perovskite nanocrystals
                 13004-13007.                                      triggered by upconverting Tm: KYb 2F 7 nanoparticles for high-level
            [36]  XIAO L, DU Q C, HUANG Y, et al. Rapid synthesis of sulfur nanodots   anti-counterfeiting[J]. Chemical Engineering Journal, 2020, 395:
                 by one-step hydrothermal reaction for luminescence-based applications   125214.
                 [J]. ACS Applied Nano Materials, 2019, 2(10): 6622-6628.   [55]  SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally
            [37]  QIAO G X, LIU L, HAO X X, et al. Signal transduction from small   activated exciton dissociation and recombination control the
                 particles: Sulfur nanodots featuring mercury sensing, cell entry   organometal halide perovskite carrier dynamics[J]. Journal of
                 mechanism and in vitro tracking performance[J]. Chemical Engineering   Physical Chemistry Letters, 2014, 5(13): 2189-2194.
                 Journal, 2020, 382: 122907.                   [56]  YANG E L, ZANG Y J, SHEN Y F,  et al. Quantum dots for
            [38]  DUAN Y X, TAN  J  S,  HUANG Z M,  et al. Facile synthesis of   electrochemiluminescence bioanalysis[J]. Analytica Chimica Acta,
                 carboxymethyl  cellulose sulfur quantum dots for live cell imaging   2022, 1209: 339140.
                 and sensitive detection of Cr(Ⅵ) and ascorbic acid[J]. Carbohydrate   [57]  CAO  Z Y, SHU Y F, QIN  H Y,  et al. Quantum dots with highly
                 Polymers, 2020, 249: 116882.                      efficient, stable, and multicolor electrochemiluminescence[J]. ACS
            [39]  SONG Y H, TAN J S, WANG G, et al. Oxygen accelerated scalable   Central Science, 2020, 6(7): 1129-1137.
                 synthesis of highly fluorescent sulfur quantum dots[J]. Chemical   [58]  LI X Y, XU Y, CHEN Y X,  et al. Dual enhanced
                 Science, 2019, 11(3): 772-777.                    electrochemiluminescence of aminated Au@SiO 2/CdS quantum dot
            [40]  WANG  Z G, WANG H G, XIONG Y,  et al. Hydrogen peroxide   superstructures: Electromagnetic field enhancement and chemical
                 assisted synthesis  of highly luminescent sulfur quantum dots[J].   enhancement[J]. ACS Applied Materials & Interfaces, 2019, 11(4):
                 Angewandte Chemie International Edition, 2019, 58(21): 7040-7044.   4488-4499.
            [41]  LU  W Y,  WEI Z  T, GAO G X, et al. Investigation on dynamic   [59]  LIU Z  Y, QI W J, XU G B,  et al. Recent advances in
                 changes in the  morphology and fluorescence properties of sulfur   electrochemiluminescence[J]. Chemical Society. Review,  2015, 10:
                 quantum dots[J].  Jounral of Physical Chemistry Letters, 2022,   3117-3142.
                 13(33): 7618-7623.                            [60]  WANG X  B, ZHAO  Y Q, HUA  Q, et al. An ultrasensitive
            [42]  LI Q L, SHI L X, DU K, et al. Copper-ion-assisted  precipitation   electrochemiluminescence biosensor for the detection of total
                 etching method for the luminescent enhanced assembling of sulfur   bacterial count in environmental and biological samples based on a
                 quantum dots[J]. ACS Omega, 2020, 5(10): 5407-5411.   novel sulfur quantum dot luminophore[J]. Analyst, 2022, 147(8):
            [43]  HU Z, DAI H Q, WEI X, et al. 49.25% efficient cyan emissive sulfur   1716-1721.
                 dots via a microwave-assisted route[J]. RSC Advances, 2020, 10(29):   [61]  WANG S, BAO X, GAO B, et al. A novel sulfur quantum dot for the
                 17266-17269.                                      detection of cobalt ions and norfloxacin as a fluorescent "switch"[J].
            [44]  SHENG Y L, HUANG Z N, ZHONG Q, et al. Size-focusing results   Dalton Transaction, 2019, 48(23): 8288-8296.
                 in highly photoluminescent sulfur quantum dots with a stable   [62]  CHEN  D J, LI S  X, ZHENG F Y.  Water soluble sulphur quantum
                                                                                +
                 emission wavelength[J]. Nanoscale, 2021, 13(4): 2519-2526.   dots for selective Ag  sensing based on the ion aggregation-induced
            [45]  WEI Z T, LU W Y, PAN C W, et al. Manipulating time-dependent   photoluminescence enhancement[J]. Analytical Methods, 2016, 8(3):
                 size distribution of sulfur quantum  dots and their fluorescence   632-636.
                 sensing for ascorbic acid[J]. Dalton Transcations, 2022, 51(26):   [63]  ZHAO J, FAN Z F. Using zinc ion-enhanced fluorescence of sulfur
                 10290-10297.                                      quantum dots to improve the detection of the zinc(Ⅱ)-binding
            [46]  GAO P X,  HUANG Z  Y,  TAN J S,  et al. Efficient conversion of   antifungal drug clioquinol[J]. Mikrochim Acta, 2019, 187(1): 3.
                 elemental sulfur to robust ultrabright fluorescent sulfur quantum dots   [64]  ZHANG H Q, LI Y F, LU H X, et al. A ratiometric fluorescence and
                 using sulfur-ethylenediamine precursor[J]. ACS Sustainable Chemistry &   colorimetric dual-mode sensing  platform based on sulfur quantum
                                                                                                          2+
                 Engineering, 2022, 10(14): 4634-4641.             dots and carbon quantum dots for selective detection of Cu [J].
            [47]  WANG Z G, ZHANG C C,  WANG  H G, et al. Two-step oxidation   Analytical and Bioanalytical Chemistry, 2022, 414(7): 2471-2480.
                 synthesis of sulfur with a red aggregation-induced emission[J].   [65]  FU  L, WANG A W,  XIE K  F,  et al. Electrochemical detection of
                 Angewandte Chemie International Edition, 2020, 59(25): 9997-10002.   silver ions by using sulfur quantum dots modified gold electrode[J].
            [48]  HUANG Z Y (黄铮钰), HUANG Z M (黄泽明), ZHOU L (周立).   Sensors and Actuators B: Chemical, 2020, 304: 127390.
                 Facile synthesis  of highly fluorescent sulfur  quantum dots for   [66]  TAN Q, AN X X, PAN S, et al. Hydrogen peroxide assisted synthesis
                 detection of 4-nitrophenol[J]. Chinese Journal of luminescence (发光  of sulfur quantum dots for the detection of chromium(Ⅵ) and
                 学报), 2022, 43(6): 952-960.                        ascorbic acid[J]. Spectrochimica Acta part A: Molecular and
            [49]  BAI Z W, SHEN L H, WEI J H,  et al. Layered sulfur  nanosheets   Biomolecular Spectroscopy, 2021, 247: 119122.
                 prepared by assembly of sulfur quantum dots: implications for wide   [67]  MAO  Y N (毛亚宁),  WANG J (王军), GAO H  Y (高环宇), et al.
                 optical absorption and multiwavelength photoluminescence[J]. ACS   Progress in synthesis and sensing imaging of biomass-based carbon
                 Applied Nano Materials, 2020, 3(11): 10749-10756.   quantum dots[J]. Chinese Journal of Analytical  Chemistry (分析化
            [50]  LI L, YANG C, LI Y, et al. Sulfur quantum dot-based portable paper   学), 2021, 49(7): 1076-1088.
                 sensors for fluorometric and colorimetric dual-channel detection of   [68]  PEI G S, XIANG J Y, LV X W, et al. High-temperature heat capacity
                 cobalt[J]. Journal of Materials Science, 2020, 56(7): 4782-4796.   and phase transformation kinetics of NaVO 3[J]. Journal of Alloys and
            [51]  YAN F Y, XU M, XU J P, et al. Facile synthesis of high-performance   Compounds, 2019, 794: 465-472.
                 sulfur quantum dots via an effective ethylenediamine-assisted acceleration   [69]  ZHANG Y Z (张源哲), LIU Y H (刘宇豪), LU Y J (陆雨洁), et al.
                 strategy for fluorescent sensing[J]. Sensors and Actuators B: Chemical,   Study on the spectral prediction of phosphor-coated white LED based
                 2022, 370: 132393.                                on partial least squares regression[J]. Spectroscopy and Spectral
            [52]  TAN J S, SONG Y H, DAI X J, et al. One-pot synthesis of robust   Analysis (光谱学与光谱分析), 2022, 42(8): 2347-2352.
                 dendritic sulfur quantum dots for two-photon fluorescence imaging   [70]  ZHANG W Y,  LIANG H D,  QIN  X Y,  et al. Double-network
                 and "off-on" detection of hydroxyl radicals and ascorbic acid[J].   luminescent films constructed using sulfur quantum dots and
                 Nanoscale Advances, 2022, 4(13): 4035-4040.       lanthanide complexes[J]. ACS Applied Materials Interfaces, 2022,
            [53]  KHAN S  A,  LI C, JALIL  A, et al. Development of structure and   14(35): 40136-40144.
                 tuning ability of the luminescence of lead-free halide perovskite   [71]  WANG Y (王阳), HU P (胡珀), ZHOU S (周帅), et al. Anticounterfeiting
                 nanocrystals (NCs)[J]. Chemical Engineering Journal, 2021, 420: 127603.   and security applications of rare-earth upconversion nanophosphors
            [54]  LIN J D,  YANG C B, HUANG P. Photoluminescence tuning from   [J]. Progress in Chemistry (化学进展), 2021, 33(7): 1221-1237.
   56   57   58   59   60   61   62   63   64   65   66