Page 60 - 《精细化工》2023年第9期
P. 60
·1908· 精细化工 FINE CHEMICALS 第 40 卷
材料来合成 SQDs,有望实现 SQDs 的低成本和规模 [14] TSOI Q D, BENJAMIN A A, WARREN C W C. Are quantum dots
toxic? Exploring the discrepancy between cell culture and animal
化制备;(2)反应会得到一些副产物,通过设计纯
studies[J]. Chemical Research, 2013, 46: 662-671.
化方案来提纯和分离产物,提高反应收率;(3)SQDs [15] WINNIK F M, MAYSINGER D. Quantum dot cytotoxicity and ways
的发光机制仍需进一步完善,目前对 S 0 发光的研究 to reduce it[J]. Chemical Research, 2013, 46(3): 672-680.
[16] HUANG J L (黄加玲), LIU F J (刘凤娇), WANG T T (王婷婷),
较多,然而其他形态的硫对发光的影响仍未完全明 et al. Nitrogen and sulfur co-doped carbon quantum dots for accurate
确;(4)目前所合成的 SQDs 发射波长较短,应深 detection of pH in gastric juice[J]. Chemical Journal of Chinese
Universities (高等学校化学学报), 2020, 41(7): 1513-1520.
入研究合成近红外红光的 SQDs,以更加广泛地应用 [17] GUI R J, JIN H, LI J H, et al. Black phosphorus quantum dots:
于生物成像领域;(5)应探索 SQDs 的电致发光特性, Synthesis, properties, functionalized modification and applications
[J]. Chemical Society Reviews, 2018, 47(17): 6795-6823.
如电导率、可见光吸收特性、电荷分离能力等,以
[18] PAL A, SK M P, CHATTOPADHYAY A. Recent advances in
加强 SQDs 在光电催化方面的应用。 crystalline carbon dots for superior application potential[J]. Materials
拓展反应前体、设计纯化路线和优化光学性质 Advances, 2020, 1(4): 525-553.
[19] KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally
等方面成为目前 SQDs 的重要研究方向,可以预见, interconnected sulfur-rich polymers for cathode materials of high-
解决上述问题将极大地推动 SQDs 在生物医学、光 rate lithium-sulfur batteries[J]. Nature Communication, 2015, 6: 7278.
[20] LI G R, LING M, YE Y F, et al. Acacia senegal-inspired bifunctional
电催化等新兴领域的应用发展。 binder for longevity of lithium-sulfur batteries[J]. Advanced Energy
Materials, 2015, 5(21): 1500878.
参考文献: [21] BOYD D A. Sulfur and its role in modern materials science[J].
Angewandte Chemie International Edition, 2016, 55(50): 15486-15502.
[1] HARRIS R D, BETTIS H S, KODAIMATI M, et al. Electronic
processes within quantum dot-molecule complexes[J]. Chemical [22] WORTHINGTON M J H, KUCERA R L, CHALER J M. Green
Reviews, 2016, 116(21): 12865-12919. chemistry and polymers made from sulfur[J]. Green Chemistry, 2017,
[2] LIU Y H (刘艳红), ZHANG D X (张东旭), MAO B D (毛宝东), 19(12): 2748-2761.
et al. Progress in carbon dots from the perspective of quantum dots[J]. [23] TIAN T, HU R R, TANG B Z. Room temperature one-step
conversion from elemental sulfur to functional polythioureas through
Acta Chimica Sinica (化学学报), 2020, 78(12): 1349-1365.
[3] PIETRYGA J M, PARK Y S, LIM J, et al. Spectroscopic and device catalyst-free multicomponent polymerizations[J]. Journal of the
American Chemical Society, 2018, 140(19): 6156-6163.
aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, [24] ROY C S, GOSWAMI A. Supramolecular reactive sulphur nanoparticles:
116(18): 10513-10622.
[4] LIU J Q, ZHENG M B, SHI X Q, et al. Amorphous FeOOH quantum A novel and efficient antimicrobial agent[J]. Journal of Applied
Microbiology, 2013, 114(1): 1-10.
dots assembled mesoporous film anchored on graphene nanosheets [25] LIM J, PYUN J, CHAR K. Recent approaches for the direct use of
with superior electrochemical performance for supercapacitors[J]. elemental sulfur in the synthesis and processing of advanced
Advanced Functional Materials, 2016, 26(6): 919-930. materials[J]. Angewandte Chemie International Edition, 2015, 54(11):
[5] DU T, CAI K M, HAN H Y, et al. Probing the interactions of CdTe 3249-3258.
quantum dots with pseudorabies virus[J]. Scientific Reports, 2015, 5:
[26] CHOUDHURY S R, ROY S, BASU S, et al. Supramolecular reactive
16403. sulphur nanoparticles: A novel and efficient antimicrobial agent[J].
[6] WANG X S (王旭生), YANG X (杨胥), CHEN C H (陈春辉), et al. Journal of Applied Microbiology, 2012, 114(1): 1-10.
Graphene quantum dots supported on Fe-based metal-organic [27] SHI Y, ZHANG P, YANG D Q, et al. Synthesis, photoluminescence
frameworks for efficient photocatalytic CO 2 reduction[J]. Acta properties and sensing applications of luminescent sulfur nanodots
Chimica Sinica (化学学报), 2022, 80(1): 22-28.
[J]. Chemical Communications (Camb), 2020, 56(75): 10982-10988.
[7] GE L, YU H L, REN H T, et al. Photoluminescence of carbon dots [28] LI S X, CHEN D J, ZHENG F Y, et al. Water-soluble and lowly toxic
3+
and their applications in Hela cell imaging and Fe ion detection[J]. sulphur quantum dots[J]. Advanced Functional Materials, 2014,
Journal of Materials Science, 2017, 52(17): 9979-9989. 24(45): 7133-7138.
[8] GAO Y J, LI X B, WU H L, et al. Exceptional catalytic nature of [29] WANG C X, WEI Z T, PAN C W, et al. Dual functional hydrogen
quantum dots for photocatalytic hydrogen evolution without external peroxide boosted one step solvothermal synthesis of highly uniform
cocatalysts[J]. Advanced Functional Materials, 2018, 28(33): 97-102. sulfur quantum dots at elevated temperature and their fluorescent
[9] ZHOU Y R, TONG T, JIANG X H, et al. GSH-ZnS nanoparticles sensing[J]. Sensors and Actuators B: Chemical, 2021, 344: 130326.
exhibit high-efficiency and broad-spectrum antiviral activities via [30] WANG Y, ZHAO Y N, WU J L, et al. Negatively charged sulfur
multistep inhibition mechanisms[J]. ACS Applied Bio Materials, quantum dots for treatment of drug-resistant pathogenic bacterial
2020, 3(8): 4809-4819. infections[J]. Nano Letters, 2021, 21(22): 9433-9441.
[10] GAO D G (高党鸽), ZHANG Y (张莹), LYU B (吕斌), et al. [31] JIN J H B N, TAEKYUNG Y, JUNG H Y, et al. Generalized and
Research progress of perovskite quantum dots with total inorganic facile synthesis of semiconducting metal sulfide nanocrystals[J]. Journal
cesium lead halogen[J]. Fine Chemicals (精细化工), 2021, 38(7): of the American Chemical Society, 2003, 125(36): 11100-11105.
1297-1304. [32] ARSHAD F, SK M P. Luminescent sulfur quantum dots for colorimetric
[11] GEYS J, NEMMAR A, VERBEKEN E, et al. Acute toxicity and discrimination of multiple metal ions[J]. ACS Applied Nano Materials,
prothrombotic effects of quantum dots: Impact of surface charge[J]. 2020, 3(3): 3044-3049.
Environ Health Perspect, 2008, 116(12): 1607-1613. [33] ARSHAD F, SK M P, MAURYA S K, et al. Mechanochemical
[12] WANG J J, LI Z J, LI X B, et al. Photocatalytic hydrogen evolution synthesis of sulfur quantum dots for cellular imaging[J]. ACS Applied
from glycerol and water over nickel-hybrid cadmium sulfide quantum Nano Materials, 2021, 4(4): 3339-3344.
dots under visible-light irradiation[J]. ChemSusChem, 2014, 7(5): [34] SHEN L H, WANG H N, LIU S N, et al. Assembling of sulfur
1468-1475. quantum dots in fission of sublimed sulfur[J]. Journal of the American
[13] RAMASAMY P, KIM N, KANG Y S, et al. Tunable, bright, and Chemical Society, 2018,140(25): 7878-7884.
narrow-band luminescence from colloidal indium phosphide [35] ZHANG C C, ZHANG P, JI X J, et al. Ultrasonication-promoted
quantum dots[J]. Chemistry of Materials, 2017, 29(16): 6893-6899. synthesis of luminescent sulfur nano-dots for cellular imaging