Page 34 - 201807
P. 34
·1102· 精细化工 FINE CHEMICALS 第 35 卷
由图 8 可见,PdTPP/DPA/PDMS 暴露在空气下, [10] P Mahato, A Monguzzi, N Yanai, et al. Fast and long-range triplet
exciton diffusion in metal-organic frameworks for photon upconversion
上转换效率的稳定性明显优于溶液态上转换效率。 at ultralow excitation power[J]. Nature Materials, 2015, 14(9):924-
930.
将 PdTPP/DPA 双组分体系的固态基质和甲苯溶液 [11] V Gray, D Dzebo, M Abrahamsson, et al. Triplet-triplet annihilation
photon-upconversion: Towards solar energy applications[J]. Phys
放置于同样的大气环境中(未除氧),在初始 30 min Chem Chem Phys, 2014, 16(22):10345-10352.
内每隔 5 min 测试一次上转换效率,然后再每隔 [12] Liang Z Q, Ye C Q, Wang X M, et al. New anthracene derivatives as
triplet acceptors for efficient green-to-blue low-power
60 min 测试一次上转换效率。结果表明,溶液态的 upconversion[J]. Chem Phys Chem, 2013, 14(15): 3517-3525.
[13] V Gray, K Börjesson, D Dzebo, et al. Porphyrin-anthracene
上转换效率最高达 25%,随后则迅速下降,在 20 min complexes: Potential in triplet-triplet annihilation upconversion [J]. J
Phys Chem C, 2016, 120: 19018-19026.
内上转换效率从 24%降为 3%,保持 22%的上转换 [14] T F Schulze, J Czolk, T W Schmidt. Efficiency enhancement of
organic and thin-film silicon solar cells with photochemical
效率只能持续 2 min。而固态上转换效率最高可达 upconversion[J]. J Phys Chem C, 2012, 116: 22794-22801.
26.3%,且该固态树脂在空气氛中保持 22%的上转 [15] Shen L, Wang X M, Li B, et al. Two-photon absorption properties of
substituted porphyrins[J]. Journal of Porphyrins and Phthalocyanines,
换效率可持续在 10 h 以上。这主要是由于在固态基 2006, 10(3): 160-166.
[16] S Shanmugathasan, C Edwards, R W Boyle. Advances in modern
质中,PdTPP 和 DPA 分子被包裹进 PDMS 树脂结构 synthetic porphyrin chemistry[J]. Tetrahedron, 2000, 56(8): 1025-
1046.
中,隔绝了与氧气的接触,从而提高了上转换效率 [17] K H So, H T Park, S C Shin, et al. Synthesis and characterization of
的稳定性。 new anthracene-based blue host material[J]. Bull Korean Chem Soc,
2009, 30(7): 1611-1615.
[18] Zhang L P (张利萍), Liu S M (刘述梅), Liang G C (梁广才), et al.
3 结论 Synthesis and study on reaction kinetics of vinyl polydimethylsiloxane
[J]. Silicone Material (有机硅材料), 2005, 19(3): 17-20.
[19] A Turshatov, D Busko, Y Avlasevich, et al. Synergetic effect in
发光剂(DPA)的荧光量子产率在 PDMS 固态 triplet-tripet annihilation upconversion: highly efficient multi-
chromophore emitter[J]. Chem Phys Chem, 2012, 13(13): 3112-3115.
基质中( fluo =95.3%)比溶液态中( fluo = 92.5%) [20] T N Singh-Rachford, J Lott, C Weder, et al. Influence of temperature
on low-power upconversion in rubbery polymer blends[J]. J Am
高;光敏剂(PdTPP)的磷光寿命在固态中(23.8 μs) Chem Soc, 2009, 131(33): 12007-12014.
[21] Guo T,Deng Q, Fang G, et al. Upconversion fluorescence
比在溶液态中(18.1 μs)明显延长。Stern-Volmer metal-organic frameworks thermo-sensitive imprinted polymer for
enrichment and sensing protein[J]. Biosensors and Bioelectronics,
方程证实,固态中 DPA 对 PdTPP 的猝灭效率由液 2016, 79: 341-346.
9
9
态的 1.018×10 L/(mols)提高至 1.475×10 L/(mols), [22] R R Islangulov, J Lott J, C Weder, et al. Noncoherent low-power
upconversion in solid polymer films[J]. J Am Chem Soc, 2007,
表明聚合物基质中光敏剂与发光剂之间的三线态- 129(42): 12652-12653.
[23] O J Achadu, M Managa,T Nyokong. Fluorescence behaviour of
三线态能量转移效率较高,从而使固态上转换效率 supramolecular hybrids containing graphene quantum dots and
pyrene-derivatized phthalocyanines and porphyrins[J]. Photochemistry
提高至 26.3%,这是目前文献报道的最高值。 and Photobiology, 2017, 333: 174-185.
由于 PDMS 树脂可有效隔绝空气,使得固态上 [24] J Olmsted. Calorimetric determinations of absolute fluorescence
quantum yields[J]. J Phys Chem, 1979, 83(20): 2581-2584.
转换树脂在空气中暴露 10 h 保持上转换效率基本不 [25] M Fischer, J Georges. Fluorescence quantum yield of rhodamine 6G
in ethanol as a function of concentration using thermal lens
变,这表明固态上转换树脂有较好的稳定性,具有 spectrometry[J]. J Chem Phys Lett, 1996, 260(1/2): 115-118.
[26] J Kang, Y Liu, M X Xie, et al. Interactions of humanserum albumin
潜在的应用前景。 with chlorogenic acid and ferulic acid [J]. Biochimicaet Biophysica
Acta (BBA)-General Subjects, 2004, 1674(2): 205-214.
参考文献: [27] Ye C Q, Sun B, Wang X M, et al. Synthesis and two-photon
up-conversion sensing property of pyridinylbenzothiadiazole-based
[1] Ye C Q, Zhou L W, Wang X M, et al. Photon upconversion: from chromophores[J]. Dyes and Pigments, 2014, 102(3): 133-141.
two-photon absorption (TPA) to triplet-triplet annihilation (TTA)[J]. [28] Wu W, Guo S,Zhao J Z. The development of triplet-triplet
Phys Chem Chem Phys, 2016, 18(16): 10818-10835. annihilation upconversion[J]. Scientia Sinica Chimica, 2012, 42(10):
[2] Wang B, Sun B, Wang X M, et al. Efficient triplet sensitizers of 1381-1398.
palladium ( Ⅱ ) tetraphenylporphyrins for upconversion-powered [29] Zhao J, Ji S, Guo H. Triplet-triplet annihilation based upconversion:
photoelectrochemistry [J]. J Phys Chem C, 2014, 118(3): 1417-1425. from triplet sensitizers and triplet acceptors to upconversion quantum
[3] Ye C Q, Wang J J, Wang X M, et al. A new medium for triplet-triplet yields[J]. RSC Advances, 2011, 1(6): 937-950.
annihilated upconversion and photocatalytic application[J]. Phys [30] Guo H, Li Q, Ma L, et al. Fluorene as -conjugation linker in N^N
Chem Chem Phys, 2015, 18(5): 3430-3438. Pt(Ⅱ) bisacetylide complexes and their applications for triplet-triplet
[4] Ye C Q, Wang B, Wang X M, et al. Oil-in-water microemulsion: an annihilation based upconversion[J]. J Phys Chem, 2012, 22(31):
effective medium for triplet–triplet annihilated upconversion with 15757-15768.
efficient triplet acceptors[J]. J Mater Chem C, 2014, 2(40): 8507- [31] J S Lissau, D Nauroozi, M P Santoni, et al. Anchoring energy
8514. acceptors to nanostructured ZrO 2 enhances photon upconversion by
[5] C A Parker, C G Hatchard,T A Joyce. Selective and mutual sensitized triplet-triplet annihilation under simulated solar flux[J]. J
sensitization of delayed fluorescence[J]. Nature, 1965, 205(4978): Phys Chem C, 2013, 117(28): 14493-14501.
1282-1284. [32] Ma C, Bian T, Yang S, et al. Fabrication of versatile cyclodextrin-
[6] P B Merkel,J P Dinnocenzo. Low-power green-to-blue and functionalized upconversion luminescence nanoplatform for
blue-to-UV upconversion in rigid polymer films[J]. J Lumin, 2009, biomedical imaging[J]. Analytical Chemistry, 2014, 86(13): 6508-
129(3): 303-306. 6515.
[7] C Wohnhaas, A Turshatov, V Mailander, et al. Annihilation [33] Yang D, Ma P A, Hou Z, et al. Current advances in lanthanide ion
3+
upconversion in cells by embedding the dye system in polymeric (Ln )-based upconversion nanomaterials for drug delivery[J].
nanocapsules[J]. Macromol Biosci, 2011, 11(6): 772-778. Chemical Society Reviews, 2015, 44(6): 1416-1448.
[8] A Monguzzi, M Frigoli, C Larpent, et al. Low-power-photon [34] Liu Q, Sun Y, Li F Y, et al. 18F-labeled magnetic-upconversion
up-conversion in dual-dye-loaded polymer nanoparticles[J]. Adv nanophosphors via rare-earth cation-assisted ligand assembly[J].
Funct Mater, 2012, 22(1): 139-143. ACS Nano, 2011, 5(4): 3146-3157.
[9] Kim J H, Deng F, Castellano F N,et al. High efficiency low-power [35] G Massaro, J Hernando, D Ruiz-Molina, et al. Thermally switchable
upconverting soft materials[J]. Chem Mater, 2012, 24(12): 2250- molecular upconversion emission[J]. Chemistry of Materials, 2016,
2252. 28(3): 738-745.