Page 45 - 201808
P. 45

第 8 期                   顾云智,等:  芳纶纳米纤维增强聚乙烯醇复合膜的制备与性能                                   ·1293·


                 由图 8 可知,复合膜空气侧较为光滑平整,玻                            Journal of Physical Chemistry C, 2015, 119(49): 27467-27477.
            璃板侧形成一种较为特殊的多孔结构。通过空气侧                             [6]   Yang M, Cao K, Yeom  B,  et al. Aramid nanofiber-reinforced
                                                                   transparent nanocomposites[J]. Journal of Composite Materials,
            放大后的 SEM 图(图 8c)发现,复合膜表面在高                             2015, 49(15): 1873-1879.
            放大倍数下保持了平整光滑的形貌,没有出现明显                             [7]   Tung S O, Ho S, Yang M, et al. A dendrite-suppressing composite
                                                                   ion conductor from aramid nanofibres[J]. Nature Communications,
            的缺陷和团聚体,证明芳纶纳米纤维分散体在聚乙
                                                                   2015, 6: 6152.
            烯醇基体中分散良好。正是由于这种良好的分散作                             [8]   Semenzim V L, Basso G G, da Silva D A,  et al. Synthesis and
            用,使得芳纶纳米纤维可以大幅增强聚乙烯醇基体                                 characterization of novel, highly crystalline poly (vinyl alcohol)
            的力学性能和热学性能。                                            microspheres for chemoembolization therapy[J]. Journal of Applied
                                                                   Polymer Science, 2011, 121(3): 1417-1423.
                                                               [9]   Srithep Y, Turng L S, Sabo R, et al. Nanofibrillated cellulose (NFC)
            3   结论                                                 reinforced polyvinyl alcohol (PVOH) nanocomposites: properties,
                                                                   solubility of carbon dioxide, and foaming[J]. Cellulose, 2012, 19(4):
                 制备了芳纶纳米纤维增强聚乙烯醇的复合膜                               1209-1223.
            ANFs/PVA,通过 FTIR、DSC、TG、AFM、SEM、                   [10]  Roohani M, Habibi  Y, Belgacem N  M, et  al. Cellulose whiskers
                                                                   reinforced  polyvinyl alcohol copolymers nanocomposites[J]. European
            电子万能试验机及透光度/雾度测定仪等对其进行
                                                                   Polymer Journal, 2008, 44(8): 2489-2498.
            了结构表征与性能测试,结果表明:                                   [11]  Li Qing (李勍), Chen  Wenshuai (陈文帅), Yu Haipeng (于海鹏),
                (1)红外光谱证明,芳纶纳米纤维和聚乙烯醇                              et al. Cellulose  nanofiber reinforced polymer nanocomposites: a  short
                                                                   review [J]. Scientia Silvae Sinicae (林业科学), 2013, 49(8): 126-131.
            基体间存在分子间氢键作用。                                      [12]  Hassan A, Salema A A, Ani F N, et al. A review on oil palm empty
                (2)通过 AFM、SEM 可以看出,成功制备出                           fruit bunch fiber-reinforced polymer composite materials[J]. Polymer
            直径为 20~30 nm 的芳纶纳米纤维。                                  Composites, 2010, 31(12): 2079-2101.
                                                               [13]  Shabbir S, Zulfiqar S, Shah S I,  et al. Synthesis, morphology, and
                (3)从 SEM、透光度测试结果可以看出,复合
                                                                   properties of self-assembled nanostructured aramid and polystyrene
            膜表面平整,纳米纤维在聚乙烯醇基体中分散良好。                                blends[J]. The Journal of Physical Chemistry B, 2010, 114(41):
                (4)力学和热学测试表明,存在一个最佳的填                              13241-13248.
                                                               [14]  O'Connor  I, Hayden H, O'Connor  S,  et al. Polymer reinforcement
            充量,即芳纶纳米纤维质量分数为 6.0%时,薄膜的                              with kevlar-coated carbon  nanotubes[J]. The Journal of Physical
            抗拉强度可以达到 17.86 MPa,与纯聚乙烯醇膜相比                           Chemistry C, 2009, 113(47): 20184-20192.
            提高了约 59.2%,而此处的热学性能也达到最佳,                          [15]  Deng Q, Li J, Yang J, et al. Optical and flexible α-chitin nanofibers
                                                                   reinforced poly (vinyl alcohol)(PVA) composite film: fabrication and
            结晶温度为 174.51 ℃,玻璃化温度为 75.20 ℃,熔融温                      property[J]. Composites Part A: Applied Science and Manufacturing,
            度为 208.82 ℃。                                           2014, 67: 55-60.
                                                               [16]  Yu Bo (俞波). Progress in production and application of  p-aramid
                 综上所述,基于这种性能增强、存在较强界面
                                                                   fibers(Ⅱ) [J]. Synthetic Technology and Application (合成技术与应
            相互作用的复合膜的制备和表征,结合表面处理,                                 用), 2005, 20(3) : 20-25.
            为进一步制备聚合物分离膜提供了一定的理论基础。                            [17]  Bergshoef M M,  Vancso G J.  Transparent nanocomposites with
                                                                   ultrathin, electrospun nylon-4, 6 fiber reinforcement[J]. Advanced
            参考文献:                                                  Materials, 1999, 11(16): 1362-1365.
                                                               [18]  Krimm S, Liang C Y, Sutherland  G. Infrared spectra of high
            [1]   Fan J, Shi Z, Zhang L,  et al. Aramid nanofiber-functionalized
                                                                   polymers.Ⅴ. polyvinyl alcohol[J]. Journal of Polymer Science Part
                 graphene nanosheets for polymer reinforcement[J]. Nanoscale, 2012,
                 4(22): 7046-7055.                                 A: Polymer Chemistry, 1956, 22(101): 227-247.
            [2]   Zhang J M, Mousavi Z, Soykeabkaew N, et al. All-aramid composites by   [19]  Chung T S, Chen P N. Film  and membrane properties of
                 partial fiber  dissolution[J]. ACS Applied Materials & Interfaces,     polybenzimidazole (PBI) and polyarylate alloys[J]. Polymer
                2010, 2(3): 919-926.                               Engineering & Science, 1990, 30(1): 1-6.
                                                               [20]  Shibayama M,  Yamamoto T, Xiao  C F,  et al.  Bulk and surface
            [3]   Kim S S, Lee J. Miscibility and antimicrobial properties of
                 m-aramid/chitosan hybrid composite[J]. Industrial &  Engineering   characterization of cellulose/poly(vinyl alcohol) blends by fouriertransform
                 Chemistry Research, 2013, 52(36): 12703-12709.     infra-red spectroscopy[J]. Polymer, 1991, 32(6): 1010-1016.
            [4]   Yang M, Cao K, Sui L,  et al. Dispersions of aramid nanofibers: a   [21]  Bai Lu (白露),  Zhang Liping (张力平), Qu Ping (曲萍),  et al.
                 new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.   Pervaporation properties and characterization of poly(vinyl alcohol)/
            [5]   Kuang Q, Zhang D, Yu J C, et al. Toward record-high stiffness in   cellulose nanocrystal composite membranes [J]. Chem  J Chinese
                 polyurethane nanocomposites  using  aramid nanofibers[J]. The     Universities (高等学校化学学报), 2011, 32(4): 984-989.
   40   41   42   43   44   45   46   47   48   49   50