Page 45 - 201808
P. 45
第 8 期 顾云智,等: 芳纶纳米纤维增强聚乙烯醇复合膜的制备与性能 ·1293·
由图 8 可知,复合膜空气侧较为光滑平整,玻 Journal of Physical Chemistry C, 2015, 119(49): 27467-27477.
璃板侧形成一种较为特殊的多孔结构。通过空气侧 [6] Yang M, Cao K, Yeom B, et al. Aramid nanofiber-reinforced
transparent nanocomposites[J]. Journal of Composite Materials,
放大后的 SEM 图(图 8c)发现,复合膜表面在高 2015, 49(15): 1873-1879.
放大倍数下保持了平整光滑的形貌,没有出现明显 [7] Tung S O, Ho S, Yang M, et al. A dendrite-suppressing composite
ion conductor from aramid nanofibres[J]. Nature Communications,
的缺陷和团聚体,证明芳纶纳米纤维分散体在聚乙
2015, 6: 6152.
烯醇基体中分散良好。正是由于这种良好的分散作 [8] Semenzim V L, Basso G G, da Silva D A, et al. Synthesis and
用,使得芳纶纳米纤维可以大幅增强聚乙烯醇基体 characterization of novel, highly crystalline poly (vinyl alcohol)
的力学性能和热学性能。 microspheres for chemoembolization therapy[J]. Journal of Applied
Polymer Science, 2011, 121(3): 1417-1423.
[9] Srithep Y, Turng L S, Sabo R, et al. Nanofibrillated cellulose (NFC)
3 结论 reinforced polyvinyl alcohol (PVOH) nanocomposites: properties,
solubility of carbon dioxide, and foaming[J]. Cellulose, 2012, 19(4):
制备了芳纶纳米纤维增强聚乙烯醇的复合膜 1209-1223.
ANFs/PVA,通过 FTIR、DSC、TG、AFM、SEM、 [10] Roohani M, Habibi Y, Belgacem N M, et al. Cellulose whiskers
reinforced polyvinyl alcohol copolymers nanocomposites[J]. European
电子万能试验机及透光度/雾度测定仪等对其进行
Polymer Journal, 2008, 44(8): 2489-2498.
了结构表征与性能测试,结果表明: [11] Li Qing (李勍), Chen Wenshuai (陈文帅), Yu Haipeng (于海鹏),
(1)红外光谱证明,芳纶纳米纤维和聚乙烯醇 et al. Cellulose nanofiber reinforced polymer nanocomposites: a short
review [J]. Scientia Silvae Sinicae (林业科学), 2013, 49(8): 126-131.
基体间存在分子间氢键作用。 [12] Hassan A, Salema A A, Ani F N, et al. A review on oil palm empty
(2)通过 AFM、SEM 可以看出,成功制备出 fruit bunch fiber-reinforced polymer composite materials[J]. Polymer
直径为 20~30 nm 的芳纶纳米纤维。 Composites, 2010, 31(12): 2079-2101.
[13] Shabbir S, Zulfiqar S, Shah S I, et al. Synthesis, morphology, and
(3)从 SEM、透光度测试结果可以看出,复合
properties of self-assembled nanostructured aramid and polystyrene
膜表面平整,纳米纤维在聚乙烯醇基体中分散良好。 blends[J]. The Journal of Physical Chemistry B, 2010, 114(41):
(4)力学和热学测试表明,存在一个最佳的填 13241-13248.
[14] O'Connor I, Hayden H, O'Connor S, et al. Polymer reinforcement
充量,即芳纶纳米纤维质量分数为 6.0%时,薄膜的 with kevlar-coated carbon nanotubes[J]. The Journal of Physical
抗拉强度可以达到 17.86 MPa,与纯聚乙烯醇膜相比 Chemistry C, 2009, 113(47): 20184-20192.
提高了约 59.2%,而此处的热学性能也达到最佳, [15] Deng Q, Li J, Yang J, et al. Optical and flexible α-chitin nanofibers
reinforced poly (vinyl alcohol)(PVA) composite film: fabrication and
结晶温度为 174.51 ℃,玻璃化温度为 75.20 ℃,熔融温 property[J]. Composites Part A: Applied Science and Manufacturing,
度为 208.82 ℃。 2014, 67: 55-60.
[16] Yu Bo (俞波). Progress in production and application of p-aramid
综上所述,基于这种性能增强、存在较强界面
fibers(Ⅱ) [J]. Synthetic Technology and Application (合成技术与应
相互作用的复合膜的制备和表征,结合表面处理, 用), 2005, 20(3) : 20-25.
为进一步制备聚合物分离膜提供了一定的理论基础。 [17] Bergshoef M M, Vancso G J. Transparent nanocomposites with
ultrathin, electrospun nylon-4, 6 fiber reinforcement[J]. Advanced
参考文献: Materials, 1999, 11(16): 1362-1365.
[18] Krimm S, Liang C Y, Sutherland G. Infrared spectra of high
[1] Fan J, Shi Z, Zhang L, et al. Aramid nanofiber-functionalized
polymers.Ⅴ. polyvinyl alcohol[J]. Journal of Polymer Science Part
graphene nanosheets for polymer reinforcement[J]. Nanoscale, 2012,
4(22): 7046-7055. A: Polymer Chemistry, 1956, 22(101): 227-247.
[2] Zhang J M, Mousavi Z, Soykeabkaew N, et al. All-aramid composites by [19] Chung T S, Chen P N. Film and membrane properties of
partial fiber dissolution[J]. ACS Applied Materials & Interfaces, polybenzimidazole (PBI) and polyarylate alloys[J]. Polymer
2010, 2(3): 919-926. Engineering & Science, 1990, 30(1): 1-6.
[20] Shibayama M, Yamamoto T, Xiao C F, et al. Bulk and surface
[3] Kim S S, Lee J. Miscibility and antimicrobial properties of
m-aramid/chitosan hybrid composite[J]. Industrial & Engineering characterization of cellulose/poly(vinyl alcohol) blends by fouriertransform
Chemistry Research, 2013, 52(36): 12703-12709. infra-red spectroscopy[J]. Polymer, 1991, 32(6): 1010-1016.
[4] Yang M, Cao K, Sui L, et al. Dispersions of aramid nanofibers: a [21] Bai Lu (白露), Zhang Liping (张力平), Qu Ping (曲萍), et al.
new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954. Pervaporation properties and characterization of poly(vinyl alcohol)/
[5] Kuang Q, Zhang D, Yu J C, et al. Toward record-high stiffness in cellulose nanocrystal composite membranes [J]. Chem J Chinese
polyurethane nanocomposites using aramid nanofibers[J]. The Universities (高等学校化学学报), 2011, 32(4): 984-989.