Page 30 - 201809
P. 30
·1456· 精细化工 FINE CHEMICALS 第 35 卷
超临界 CO 2 流体状态下,可以较容易地与蛋白质纤 Research (纺织学报), 2017, 38(2): 53-59.
[2] Zheng Huanda, Zheng Laijiu. Dyeing of meta-aramid fibers with
维发生加成反应实现固色,且不会引起纤维损伤;
disperse dyes in supercritical carbon dioxide[J]. Fibers and Polymers,
但纤维素纤维超临界 CO 2 流体染色时,生成的纤维 2014, 15(8): 1627-1634.
素-乙烯砜键不稳定,会发生水解反应,从而导致棉 [3] Zhang Juan (张娟), Zheng Huanda (郑环达), Zheng Laijiu (郑来久).
Review on dyeing process in supercritical carbon dioxide fluid[J].
纤维水洗牢度较差,耐光牢度也较低 [43] 。此外,利 Dyestuffs and Coloration (染料与染色), 2015, 52(4): 22-29.
用卤代乙酰氨基活性分散染料进行天然纤维超临界 [4] Zheng Huanda (郑环达), Zheng Laijiu (郑来久). Research development
of supercritical fluid dyeing and finishing technology[J]. Journal of
CO 2 流体染色,K/S 可以达到 14 以上,并呈现较好
Textile Research (纺织学报), 2015, 36(9):141-148.
的耐水洗沾色牢度和耐摩擦色牢度,但染色纤维耐 [5] Xu Wenhao (徐文浩). Computer simulations for supercritical carbon
dioxide systems[D]. Beijing: Peking University (北京大学), 2010.
水洗变色牢度较低,仅能达到 3 级左右。
[6] Zhang J, Zheng L J, Zhao Y P, et al. Green dyeing of cotton fabrics
by supercritical carbon dioxide[J]. Thermal Science, 2015, 19(4):
5 展望 1285-1288.
[7] Zhang J, Zheng H D, Zheng L J. Effect of treatment temperature on
2016 年,中国在纺织工业发展规划(2016~2020 structures and properties of flax rove in supercritical carbon dioxide[J].
Textile Research Journal, 2016. DOI:10.1177/0040517516676068.
年)中明确提出推广先进无水少水加工技术目标, [8] Xing Yanjun (邢彦军), Huang Gang (黄钢), Shen Li (沈丽), et al.
以促进纺织工业转型升级,创造竞争新优势。超临 Development of supercritical CO 2 fluid dyeing equipment[J]. China
界 CO 2 流体染色技术无污染、零排放,实现了染色 Textile Leader (纺织导报), 2011, (8): 79-86.
[9] Zheng H D,Zhang J,Yan J, et al. An industrial scale multiple
过程的清洁化生产,提升了印染行业的可持续发展 supercritical carbon dioxide apparatus and its eco-friendly dyeing
能力,经济效益和社会效益显著,并显示出了明显 production[J]. Journal of CO 2 Utilization, 2016, 16: 272-281.
[10] Hou A Q, Chen B, Dai J J, et al. Using supercritical carbon dioxide
的产业化前景。经过科技工作者的多年努力探索研 as solvent to replace water in polyethylene terephthalate (PET) fabric
究,中国在超临界 CO 2 流体染色研究开发上取得了 dyeing procedures[J]. Journal of Cleaner Production, 2010,
18(10/11): 1009-1014.
巨大进步,为了继续保持中国在该项技术产业化研
[11] Yang Yu (杨宇). Study on the hydrodynamics behavior numerical
究与应用中的领先地位,除了多学科协同推进该技 simulate in supercritical CO 2 printing process[D]. Dalian: Dalian
术进一步发展外,尚需在以下几个方面展开科研攻关: Polytechnic University (大连工业大学), 2008.
[12] Zheng Huanda (郑环达), Zhao Qiang (赵强), Yue Chengjun (岳成
(1)超临界 CO 2 流体染色专用商品化染料体
君), et al. Engineering plant and process for dyeing of polyester
系。基于相似相溶原理从传统商品染料中筛选出适 bobbins in supercritical CO 2 fluid[J]. Journal of Textile Research (纺
宜于超临界 CO 2 流体染色的染料结构;并依此开发 织学报), 2017, 38(8): 86-90.
[13] Zhan Chunnan (战春楠). Design of the entire device of supercritical
新型染料结构合成修饰技术,研制适宜于微酸性超 CO 2 dyeing[D]. Dalian: Dalian Polytechnic University (大连工业大
临界 CO 2 流体染色的专用分散染料和活性分散染料 学), 2013.
[14] Zheng L J,Zheng H D, Du B, et al. Dyeing procedures of polyester
结构,建立无水染色专用商品化染料体系。
fiber in supercritical carbon dioxide using a special dyeing frame[J].
(2)超临界 CO 2 流体染色装备工业放大设计。 Journal of Engineered Fibers and Fabrics, 2015, 10(4): 37-46.
由于技术保密及知识产权保护,国际上有关超临界 [15] Bach E, Cleve E,Schollmeyer E. Past, present and future of
supercritical fluid dyeing technology-an overview[J]. Review of
CO 2 流体染色产业化装置的研究数据仍较少,创新 Progress in Coloration and Related Topics, 2002, 32(32): 88-102.
设计染色釜、染料釜、分离器等关键设备,扩展计 [16] Banchero M.Supercritical fluid dyeing of synthetic and natural
textiles-a review[J]. Coloration Technology, 2012, 129: 1-16.
算机软件在超临界 CO 2 流体染色装置模拟仿真中的 [17] Kraan M V D, Cid M V F, Woerlee G F, et al. Equilibrium study on
应用,实现产业化生产中流体输送增压过程、流体 the disperse dyeing of polyester textile in supercritical carbon
dioxide[J]. Textile Research Journal, 2007, 77(8): 550-558.
升温过程、染色循环过程、分离回收过程强化,有
[18] Özcan A S, Özcan A. Adsorption behavior of a disperse dye on
效保障超临界流体染色整套装备的工业放大。 polyester in supercritical carbon dioxide[J]. The Journal of
(3)超临界 CO 2 流体染色工艺放大效应。构建 Supercritical Fluids, 2005, 35(2): 133-139.
[19] Okubayashi S,Suzuma T, Zhao C, et al. Supercritical dyeing of
超临界 CO 2 /染料二元平衡体系及超临界 CO 2 /染料/ polyester fibers in a mini-plant possessing internal circulator[J]. Sen'i
纤维三元体系相平衡模型;基于染色温度、压力、 Gakkaishi, 2011, 67(2): 27-33.
时间、流体流量对纤维染色性能的影响原理,系统 [20] Elmaaty T A,Ma J, El-Taweel F, et al. Facile bifunctional dyeing of
polyester under supercritical carbon dioxide medium with new
开展超临界 CO 2 流体染色拼色技术研究,建立实验 antibacterial hydrazono propanenitrile dyes[J]. Industrial &
规模到产业化染色工艺的放大效应关系,从而实现 Engineering Chemistry Research, 2014, 53: 15566-15570.
[21] Zheng L J, Zhang Juan, Du B, et al. Supercritical CO 2 for color
色谱齐全的超临界 CO 2 流体染色加工。 graphic dyeing theoretical insight and experimental verification[J].
Thermal Science, 2015, 19(4): 1289-1293.
参考文献: [22] Zheng H D, Zheng L J, Liu M, et al. Mass transfer of Disperse Red
[1] Zhang Juan (张娟), Zheng Laijiu (郑来久), Yan Jun (闫俊), et al. 153 and its crude dye in supercritical carbon dioxide fluid[J].
Mechanical properties of wool fibers in engineering anhydrous Thermal Science, 2017, 21(4): 1745-1749.
dyeing using supercritical carbon dioxide[J]. Journal of Textile (下转第 1471 页)