Page 51 - 201809
P. 51
第 9 期 刘淑玲,等: In 2 O 3 /CdS 复合物的制备及光催化性能 ·1477·
+
•OH(or h )+organics→…→CO 2 +H 2 O metal deposition on photocatalytic activity of TiO 2[J]. Journal of
-
–
+
2–
S +3H +2e –→HS +H 2 Nanchang Institute of Aeronautical Technology, 2004, 18(1): 74-78
[12] Yue Linhai (岳林海), Fan Bangtang (樊邦棠). Photocatalytic
3 结论 degradation of water soluble dyes with semiconductor composite[J].
Environmental Pollution and Prevention (环境污染与防治), 1994,
16(4): 2-5.
基于 CdS 棒状结构,采用简单的水热反应,成 [13] Tristao J C, Magalhaes F, Corio P, et al. Electronic characterization
功地将 In 2 O 3 纳米颗粒修饰在 CdS 棒状结构表面, and photocatalytic properties of CdS/TiO 2, semiconductor composite[J].
Journal of Photochemistry & Photobiology A Chemistry, 2006,
制备了 In 2 O 3 /CdS 复合光催化剂。通过光学性质测 181(2/3): 152-157.
试和光催化降解有机污染物实验发现,所制备的复 [14] Yu Y M, Kim K, Byungsung O, et al. Band gap energy and exciton
合光催化剂表现出强于纯 In 2 O 3 和 CdS 的优异性能。 peak of cubic CdS/GaAs epilayers[J]. Journal of Applied Physics,
2002, 92(2): 1162-1164.
当复合催化剂的质量为 0.05 g,n(In 2 O 3 )∶n(CdS) [15] Chate, P. A, Patil, et al. Synthesis, optoelectronic properties and
= 1∶4 时,转化率达到 96.2%,In 2 O 3 的修饰实现了 photoelectrochemical; performance of CdS thin films[J]. Physica B
Condensed Matter, 2013, 411(7): 118-121.
光生电子和空穴的有效分离,提高了光催化降解能
[16] Xiong S, Xi B, Qian Y. CdS hierarchical nanostructures with tunable
力,在污染物处理和设计合成新型纳米光催化剂领 morphologies: preparation and photocatalytic properties[J]. J of Phys
域具有潜在的应用前景和理论意义。 Chem C, 2010, 114(33): 14029-14035.
[17] And D J, Guo L. A novel method for the preparation of a highly
参考文献: stable and active CdS photocatalyst with a special surface
nanostructure[J]. Journal of Physical Chemistry B, 2006, 110(23):
[1] Gopchandran K G, Joseph B, Abraham J T, et al. Characterization of 11139-11145.
directly and indirectly oxidized thin indium films[J]. Indian Journal [18] Chen X, Li L, Zhang W, et al. Multi-pathway photoelectron
of Engineering & Materials Sciences, 1997, 4(6): 282-286. migration in globular flower-like In 2O 3/AgBr/Bi 2WO 6, synthesized by
[2] Xing Y, Que W, Yin X, et al. In 2O 3/Bi 2Sn 2O 7, Heterostructured microwave-assisted method with enhanced photocatalytic activity[J].
nanoparticles with enhanced photocatalytic activity[J]. Applied Journal of Molecular Catalysis A Chemical, 2016, 414: 27-36.
Surface Science, 2016, 387: 36-44. [19] Ma Shanshan (马珊珊). Preparation and activity study of nanosulfide/
[3] Forsh E A, Abakumov A M, Zaytsev V B, et al. Optical and potassium titanate Composite photocatalyst[D]. Hebei United
photoelectrical properties of nanocrystalline indium oxide with small University (河北联合大学), 2013.
grains[J]. Journal of Nanoelectronics & Optoelectronics, 2015, [20] Liu Shaoyou (刘少友), Zuo ChengGang (左成钢), ChenDaoyuan (陈
595(6): 25-31. 远道), et al. Energy bandgap regulation and photocatalytic activity of
[4] Domènech-Gil G, Barth S, SamÀ J, et al. Gas sensors based on Fe-doped TiO 2 ultrafine powders[J].Journal of Synthetic Crystals(人
individual indium oxide nanowire[J]. Sensors & Actuators B 工晶体学报), 2017, 46(8): 1552-1558.
Chemical, 2016, 238: 447-454. [21] Peng Shsoqin (彭绍琴), Jiang Fengyi (江风益), Li Yuexiang (李越
[5] Li X, Zhang P, Ling J, et al. Efficient photocatalytic decomposition 湘), et al. Preparation of N-doped TiO 2[J]. Materials (功能材料),
of perfluorooctanoic acid, by indium oxide and its mechanism[J]. 2005, 6(8): 1207-1209.
Environmental Science & Technology, 2012, 46(10): 5528-5534. [22] Liu Kuaijing (刘会景, Bai Yuan (柏源), Sun Hongqi (孙红旗), et al.
[6] Zhao P T, Huang K X. Fabrication of indium sulfide hollow spheres Impact mechanism modified with nitrogen TiO 2 UV catalytically
and their conversion to indium oxide hollow spheres consisting of active dopant group[J]. Inorganic Materials (无机材料), 2009, 24(3):
multipore nanoflakes[J]. Journal of Physical Chemistry C, 2007, 443-447.
111(35): 12890-12897. [23] Chen Weiwu (陈伟武). Gas sensitivity of In 2O 3 and SnO 2 nano-
[7] Yang J, Lin C, Wang Z, et al. In(OH) 3 and In 2O 3 nanorod bundles doped with Eu ion[D]. Yunnan Normal University (云南师范大学),
and spheres: microemulsion-mediated hydrothermal synthesis and 2016.
luminescence properties.[J]. Inorganic Chemistry, 2006, 45(22): [24] Huang Yuming (黄玉明), Li Tianan (李天安), Zhang Xianjun (章娴
8973-8979. 君), et al. Study on photocatalytic degradation of dyeing wastewater
[8] Li C, Zhang D, Liu X, et al. In 2O 3 nanowires as chemical sensors[J]. by TiO 2[J]. Journal of Southwest China Normal University (西南师
Applied Physics Letters, 2003, 82(10): 1613-1615. 范大学学报), 1999, 24(4): 443-447.
[9] Du J, Yang M, Cha S N, et al. Indium hydroxide and indiumoxide [25] Mezughi K, Tizaoui C, Alkhatib M F. Effect of TiO 2 concentration on
nanospheres, nanoflowers, microcubes,and nanorods:synthesis and photocatalytic degradation of reactive orange 16 dye (Ro16)[J].
optical properties[J]. Russian Journal of Inorganic Chemistry, 2008, Advances in Environmental Biology, 2014, 8(3): 692-695.
8(7): 1854-1861. [26] Yan Yong (闫勇), Gao Xiaoqian (高孝钱), Wu Xiaojun (吴小俊),
[10] Tang Zhiyuan (唐致远), Yang Xiaoxia (阳晓霞), Chen Yuhong (陈玉 et al. Study on hydration of natural hard gypsum by sodium sulfate
2+
4+
红), et al. Effects of Mg , Zr ion doping on the electrochemical and sodium sulfate[J]. Nonmetallic ore (非金属矿), 2011, 34(6):
properties of Li 4Ti 5O 12[J]. Fine Chemicals (精细化工), 2007, 24(3): 39-41.
273-277. [27] Liu Hai (刘海). Study on photocatalytic activity of TiO 2 sol and its
[11] Yang L, Yao B H, Wu S L. Effect of metal-ion doping and noble application[D]. Wuxi: Jiangnan University, 2009.