Page 51 - 201809
P. 51

第 9 期                       刘淑玲,等: In 2 O 3 /CdS 复合物的制备及光催化性能                           ·1477·


                           +
                   •OH(or h )+organics→…→CO 2 +H 2 O               metal deposition  on photocatalytic activity of TiO 2[J]. Journal of
                                   -
                                         –
                               +
                          2–
                         S +3H +2e –→HS +H 2                       Nanchang Institute of Aeronautical Technology, 2004, 18(1): 74-78
                                                               [12]  Yue Linhai (岳林海), Fan Bangtang (樊邦棠). Photocatalytic
            3   结论                                                 degradation of  water soluble dyes  with semiconductor  composite[J].
                                                                   Environmental Pollution and Prevention (环境污染与防治), 1994,
                                                                   16(4): 2-5.
                 基于 CdS 棒状结构,采用简单的水热反应,成                       [13]  Tristao J C, Magalhaes F, Corio P, et al. Electronic characterization
            功地将 In 2 O 3 纳米颗粒修饰在 CdS 棒状结构表面,                       and photocatalytic properties of CdS/TiO 2, semiconductor composite[J].
                                                                   Journal  of Photochemistry & Photobiology A Chemistry, 2006,
            制备了 In 2 O 3 /CdS 复合光催化剂。通过光学性质测                       181(2/3): 152-157.
            试和光催化降解有机污染物实验发现,所制备的复                             [14]  Yu Y M, Kim K, Byungsung O, et al. Band gap energy and exciton
            合光催化剂表现出强于纯 In 2 O 3 和 CdS 的优异性能。                      peak of cubic CdS/GaAs epilayers[J]. Journal of Applied Physics,
                                                                   2002, 92(2): 1162-1164.
            当复合催化剂的质量为 0.05 g,n(In 2 O 3 )∶n(CdS)              [15]  Chate, P. A, Patil,  et al. Synthesis, optoelectronic properties and
            = 1∶4 时,转化率达到 96.2%,In 2 O 3 的修饰实现了                    photoelectrochemical; performance of CdS thin films[J]. Physica B
                                                                   Condensed Matter, 2013, 411(7): 118-121.
            光生电子和空穴的有效分离,提高了光催化降解能
                                                               [16]  Xiong S, Xi B, Qian Y. CdS hierarchical nanostructures with tunable
            力,在污染物处理和设计合成新型纳米光催化剂领                                 morphologies: preparation and photocatalytic properties[J]. J of Phys
            域具有潜在的应用前景和理论意义。                                       Chem C, 2010, 114(33): 14029-14035.
                                                               [17]  And D J, Guo L.  A novel  method for the preparation of a highly
            参考文献:                                                  stable and active CdS photocatalyst with a special surface
                                                                   nanostructure[J]. Journal of Physical Chemistry B, 2006, 110(23):
            [1]   Gopchandran K G, Joseph B, Abraham J T, et al. Characterization of   11139-11145.
                 directly and indirectly oxidized thin indium films[J]. Indian Journal   [18]  Chen X,  Li L,  Zhang W,  et al. Multi-pathway  photoelectron
                 of Engineering & Materials Sciences, 1997, 4(6): 282-286.   migration in globular flower-like In 2O 3/AgBr/Bi 2WO 6, synthesized by
            [2]   Xing Y, Que  W,  Yin X,  et al. In 2O 3/Bi 2Sn 2O 7, Heterostructured   microwave-assisted method with enhanced  photocatalytic activity[J].
                 nanoparticles with enhanced photocatalytic activity[J]. Applied   Journal of Molecular Catalysis A Chemical, 2016, 414: 27-36.
                 Surface Science, 2016, 387: 36-44.            [19]  Ma Shanshan (马珊珊). Preparation and activity study of nanosulfide/
            [3]   Forsh E A, Abakumov A  M,  Zaytsev  V B,  et al. Optical and   potassium titanate Composite photocatalyst[D]. Hebei United
                 photoelectrical properties of nanocrystalline indium oxide with small   University (河北联合大学), 2013.
                 grains[J]. Journal  of Nanoelectronics & Optoelectronics, 2015,   [20]  Liu Shaoyou (刘少友), Zuo ChengGang (左成钢), ChenDaoyuan (陈
                 595(6): 25-31.                                    远道), et al. Energy bandgap regulation and photocatalytic activity of
            [4]   Domènech-Gil G,  Barth S, SamÀ J,  et al. Gas sensors based on   Fe-doped TiO 2 ultrafine powders[J].Journal of Synthetic Crystals(人
                 individual indium oxide nanowire[J]. Sensors & Actuators B   工晶体学报), 2017, 46(8): 1552-1558.
                 Chemical, 2016, 238: 447-454.                 [21]  Peng Shsoqin (彭绍琴), Jiang Fengyi (江风益), Li Yuexiang (李越
            [5]   Li X, Zhang P, Ling J, et al. Efficient photocatalytic decomposition   湘),  et al. Preparation  of N-doped TiO 2[J].   Materials (功能材料),
                 of perfluorooctanoic  acid, by indium  oxide and its mechanism[J].   2005, 6(8): 1207-1209.
                 Environmental Science & Technology, 2012, 46(10): 5528-5534.   [22] Liu Kuaijing (刘会景, Bai Yuan (柏源), Sun Hongqi (孙红旗), et al.
            [6]   Zhao P T, Huang K X. Fabrication of indium sulfide hollow spheres   Impact  mechanism modified with nitrogen TiO 2  UV catalytically
                 and their conversion to indium oxide hollow spheres consisting of   active dopant group[J]. Inorganic Materials (无机材料), 2009, 24(3):
                 multipore nanoflakes[J]. Journal of Physical Chemistry  C, 2007,   443-447.
                 111(35): 12890-12897.                         [23] Chen  Weiwu  (陈伟武). Gas sensitivity of In 2O 3 and SnO 2 nano-
            [7]   Yang J, Lin C, Wang Z, et al. In(OH) 3 and In 2O 3 nanorod bundles   doped with Eu ion[D]. Yunnan Normal University (云南师范大学),
                 and spheres: microemulsion-mediated hydrothermal synthesis and   2016.
                 luminescence properties.[J]. Inorganic Chemistry, 2006, 45(22):   [24]  Huang Yuming (黄玉明), Li Tianan (李天安), Zhang Xianjun (章娴
                 8973-8979.                                        君), et al. Study on photocatalytic degradation of dyeing wastewater
            [8]   Li C, Zhang D, Liu X, et al. In 2O 3 nanowires as chemical sensors[J].   by TiO 2[J]. Journal of Southwest China Normal University (西南师
                 Applied Physics Letters, 2003, 82(10): 1613-1615.   范大学学报), 1999, 24(4): 443-447.
            [9]   Du J, Yang M, Cha S N, et al. Indium hydroxide and indiumoxide   [25]  Mezughi K, Tizaoui C, Alkhatib M F. Effect of TiO 2 concentration on
                 nanospheres,  nanoflowers, microcubes,and nanorods:synthesis and   photocatalytic degradation of reactive orange 16 dye (Ro16)[J].
                 optical properties[J]. Russian Journal of Inorganic Chemistry, 2008,   Advances in Environmental Biology, 2014, 8(3): 692-695.
                 8(7): 1854-1861.                              [26] Yan Yong (闫勇), Gao Xiaoqian (高孝钱), Wu Xiaojun (吴小俊),
            [10]  Tang Zhiyuan (唐致远), Yang Xiaoxia (阳晓霞), Chen Yuhong (陈玉  et al. Study on hydration of natural hard gypsum by sodium sulfate
                                2+
                                   4+
                 红), et al. Effects of Mg , Zr  ion doping on the electrochemical   and sodium sulfate[J]. Nonmetallic  ore (非金属矿), 2011, 34(6):
                 properties of Li 4Ti 5O 12[J]. Fine Chemicals (精细化工), 2007, 24(3):   39-41.
                 273-277.                                      [27]  Liu Hai (刘海). Study on photocatalytic activity of TiO 2 sol and its
            [11]  Yang L,  Yao B H, Wu S L. Effect of metal-ion doping  and noble     application[D]. Wuxi: Jiangnan University, 2009.
   46   47   48   49   50   51   52   53   54   55   56