Page 101 - 精细化工2019年第10期
P. 101
第 10 期 阚 侃,等: 交联状聚苯胺包覆碳纤维复合纳米线制备及电容特性 ·2067·
质组成成分的协同作用。 interconnected carbon nanofibers as an anode material for sodium-
ion storage with excellent performance[J]. Carbon, 2013, 55: 328-334.
本文制备的 PANI/CNF 复合纳米线作为一类有
[19] Zhou Z P, Wu X F, Hou H. Electrospun carbon nanofibers
开发潜能的电极活性材料,可以应用于高性能超级 surface-grown with carbon nanotubes and polyaniline for use as
high-performance electrode materials of supercapacitors[J]. RSC
电容器的开发中。
Advances, 2014, 4: 23622-23629.
[20] Arie B, Ortal H, Ran A, et al. Carbon-based composite materials for
参考文献: supercapacitor electrodes: A review[J]. Journal of Materials
[1] Meng Q F, Cai K F, Chen Y X, et al. Research progress on Chemistry A, 2017, 5: 12653-12672.
conducting polymer based supercapacitor electrode materials[J]. [21] Huang Z H, Liu T Y, Song Y, et al. Balancing the electrical double
Nano Energy, 2017, 36: 268-285. layer capacitance and pseudocapacitance of hetero-atom doped
[2] Zhan C X, Yu G Q, Lu Y, et al. Conductive polymer nanocomposites: carbon[J]. Nanoscale, 2017, 9: 13119-13127.
A critical review of modern advanced devices[J]. Journal of [22] Wood K N, O'Hayre R, Pylypenko S. Recent progress on nitrogen/carbon
Materials Chemistry C, 2017, 5: 1569-1585. structures designed for use in energy and sustainability applications[J].
[3] Eftekhari A, Li L, Yang Y. Polyaniline supercapacitors[J]. Journal of Energy & Environmental Science, 2014, 7: 1212-1249.
Power Sources, 2017, 347(15): 86-107. [23] Lei D Y, Devarayan K, Seo M K, et al. Flexible polyaniline-
[4] Silas K S, Vibha K. Polyaniline-based electrodes: Recent application decorated carbon fiber nanocomposite mats as supercapacitors[J].
in supercapacitors and next generation rechargeable batteries[J]. Materials Letters, 2015, 154(1): 173-176.
Current Opinion in Chemical Engineering, 2016, 13: 150-160. [24] Cheng Y L, Huang L, Xiao X, et al. Flexible and cross-linked
[5] Christina O B, Huang X W, Nelson W, et al. Polyaniline nanofibers: N-doped carbon nanofiber network for high performance freestanding
Broadening applications for conducting polymers[J]. Chemical supercapacitor electrode[J]. Nano Energy, 2015, 15: 66-74.
Society Reviews, 2017, 46: 1510-1525. [25] Song X L, Guo J X, Guo M X, et al. Freestanding needle-like
[6] Xiaobo L, Ayda R, Yuriy Y S, et al. Engineering conformal polyaniline-coal based carbon nanofibers composites for flexible
nanoporous polyaniline via oxidative chemical vapor deposition and supercapacitor[J]. Electrochimica Acta, 2016, 206(10): 337-345.
its potential application in supercapacitors[J]. Chemical Engineering [26] Kan K, Wang L, Yu P, et al. 3D interlayer nanohybrids composed of
Science, 2019, 194(2): 156-164. sulfamic-acid-doped PEdot grown on expanded graphite for
[7] Wang H H, Lin J Y, Shen Z X. Polyaniline (PANi) based electrode high-performance supercapacitors[J]. Chem Plus Chem 2016, 81:
materials for energy storage and conversion[J]. Journal of Science: 242-250.
Advanced Materials and Devices, 2016, 1(3): 225-255. [27] Kan K, Wang L, Yu P, et al. 2D quasi-ordered nitrogen-enriched
[8] Silas K S, Vibha K. Polyaniline-carbon based binder-free asymmetric porous carbon nanohybrids for high energy density supercapacitors[J].
supercapacitor in neutral aqueous electrolyte[J]. Electrochimica Acta, Nanoscale, 2016, 8: 10166-10176.
2018, 268(1): 131-138. [28] Shen Zhen (申振), Dai Yatang (戴亚堂), Zhang Huan (张欢), et al.
[9] Darshna D P, Lichchhavi S, Parasharam M S. Redox additive Synthesis of microporous carbon-polyaniline nanowire composites
enhanced capacitance: Multi-walled carbon nanotubes/polyaniline and their electrochemical capacitive performance[J]. Fine
nanocomposite based symmetric supercapacitors for rapid charge Chemicals(精细化工), 2012, 29(12): 1181-1185.
storage[J]. Applied Surface Science, 2019, 469(1): 162-172. [29] Dirican M, Yanilmaz M, Zhang X W. Free-standing polyaniline-
[10] Frank O A, Gracita M T, Samuel K, et al. Electrospun carbon porous carbon nanofiber electrodes for symmetric and asymmetric
nanofiber-carbon nanotubes coated polyaniline composites with supercapacitors[J]. RSCA dvances, 2014, 4: 59427-59435.
improved electrochemical properties for supercapacitors[J]. [30] Yan X B, Tai Z X, Chen J T, et al. Fabrication of carbon
Electrochimica Acta, 2018, 259(1): 1110-1119. nanofiber-polyaniline composite flexible paper for supercapacitor[J].
[11] Ma J, Tang S C, Syed J A, et al. Asymmetric hybrid capacitors based Nanoscale, 2011, 3(1): 212-216.
on novel bearded carbon fiber cloth-pinhole polyaniline electrodes [31] Sun Li (孙立), Xu Liyang (徐立洋), Li Hongyang (李宏扬), et al.
with excellent energy density[J]. RSC Advances, 2016, 6: 82995- Synthesis and energy storage properties of nitrogen-doped porous
83002. graphite carbon[J]. Fine Chemicals( 精细化工 ), 2018, 35(10):
[12] Chau T, Richa S, Daniel L, et al. Polyaniline-coated freestanding porous 1659-1666.
carbon nanofibers as efficient hybrid electrodes for supercapacitors[J]. [32] Zhao Qiang (赵强), Lv Mangeng (吕满庚). Synthesis of three-dimensional
Journal of Power Sources, 2015, 293(20): 373-379. ordered polyaniline/graphene nanocomposite for supercapacitor
[13] Yang C, Li D G. Flexible and foldable supercapacitor electrodes from electrode[J]. Fine Chemicals(精细化工), 2016, 33(6): 635-642.
the porous 3D network of cellulose nanofibers, carbon nanotubes and [33] Wang H H, Zhu E W, Yang J Z, et al. Bacterial cellulose
polyaniline[J]. Materials Letters, 2015, 155(15): 78-81. nanofiber-supported polyaniline nanocomposites with flake-shaped
[14] Jin K, Zhang W J, Wang Y X, et al. In-situ hybridization of morphology as supercapacitor electrodes[J]. Journal of Physical
polyaniline nanofibers on functionalized reduced graphene oxide Chemistry C, 2012, 116: 13013-13019.
films for high-performance supercapacitor[J]. Electrochimica Acta, [34] Lin W H, Xu K, Peng J, et al. Hierarchically structured carbon
2018, 285(20): 221-229. nanofiber-silsesquioxane-polyaniline nanohybrids for flexible
[15] Zhang L L, Huang D, Hu N T, et al. Three-dimensional structures of supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2015,
graphene/polyaniline hybrid films constructed by steamed water for 3: 8438-8449.
high-performance supercapacitors[J]. Journal of Power Sources, [35] Ji E Y, Injoon J, Minjae K, et al. Electrochemically polymerized
2017, 342 (28): 1-8. vine-like nanostructured polyaniline on activated carbon nanofibers
[16] Xiong C Y, Li T H, Zhu Y C, et al. Two-step approach of fabrication for supercapacitor[J]. Electrochimica Acta, 2013, 111(30): 136-143.
of interconnected nanoporous 3D reduced graphene oxide-carbon [36] Miao F J, Shao C L, Li X H, et al. Polyaniline-coated electrospun
nanotube-polyaniline hybrid as a binder-free supercapacitor carbon nanofibers with high mass loading and enhanced capacitive
electrode[J]. Journal of Alloys and Compounds, 2017, 695(25): performance as freestanding electrodes for flexible solid-state
1248-1259. supercapacitors[J]. Energy, 2016, 95(15): 233-241.
[17] Cai X, Zhang C Q, Zhang S S, et al. Application of carbon fibers to [37] Yang D, Ni W, Cheng J L, et al. Omnidirectional porous fiber scrolls
flexible, miniaturized wire/fiber-shaped energy conversion and storage of polyaniline nanopillars array-N-doped carbon nanofibers for
devices[J]. Journal of Materials Chemistry A, 2017, 5: 2444-2459. fiber-shaped supercapacitors[J]. Materials Today Energy, 2017, 5:
[18] Wang Z H, Qie L, Yuan L X, et al. Functionalized N-doped 196-204.