Page 101 - 精细化工2019年第10期
P. 101

第 10 期                阚   侃,等:  交联状聚苯胺包覆碳纤维复合纳米线制备及电容特性                                 ·2067·


            质组成成分的协同作用。                                            interconnected  carbon  nanofibers  as  an  anode  material  for  sodium-
                                                                   ion storage with excellent performance[J]. Carbon, 2013, 55: 328-334.
                 本文制备的 PANI/CNF 复合纳米线作为一类有
                                                               [19]  Zhou  Z  P,  Wu  X  F,  Hou  H.  Electrospun  carbon  nanofibers
            开发潜能的电极活性材料,可以应用于高性能超级                                 surface-grown  with  carbon  nanotubes  and  polyaniline  for  use  as
                                                                   high-performance  electrode  materials  of  supercapacitors[J].  RSC
            电容器的开发中。
                                                                   Advances, 2014, 4: 23622-23629.
                                                               [20]  Arie B, Ortal H, Ran A, et al. Carbon-based composite materials for
            参考文献:                                                  supercapacitor  electrodes:  A  review[J].  Journal  of  Materials
            [1]   Meng  Q  F, Cai  K F,  Chen Y X,  et al.  Research  progress  on   Chemistry A, 2017, 5: 12653-12672.
                 conducting  polymer  based  supercapacitor  electrode  materials[J].   [21]  Huang Z H, Liu T Y, Song Y, et al. Balancing the electrical double
                 Nano Energy, 2017, 36: 268-285.                   layer  capacitance  and  pseudocapacitance  of  hetero-atom  doped
            [2]   Zhan C X, Yu G Q, Lu Y, et al. Conductive polymer nanocomposites:   carbon[J]. Nanoscale, 2017, 9: 13119-13127.
                 A  critical  review  of  modern  advanced  devices[J].  Journal  of   [22]  Wood K N, O'Hayre R, Pylypenko S. Recent progress on nitrogen/carbon
                 Materials Chemistry C, 2017, 5: 1569-1585.        structures designed for use in energy and sustainability applications[J].
            [3]   Eftekhari A, Li L, Yang Y. Polyaniline supercapacitors[J]. Journal of   Energy & Environmental Science, 2014, 7: 1212-1249.
                 Power Sources, 2017, 347(15): 86-107.         [23]  Lei D Y,  Devarayan  K, Seo M K,  et al.  Flexible  polyaniline-
            [4]   Silas K S, Vibha K. Polyaniline-based electrodes: Recent application   decorated  carbon  fiber  nanocomposite  mats  as  supercapacitors[J].
                 in  supercapacitors  and  next  generation  rechargeable  batteries[J].   Materials Letters, 2015, 154(1): 173-176.
                 Current Opinion in Chemical Engineering, 2016, 13: 150-160.   [24]  Cheng  Y  L,  Huang  L,  Xiao  X,  et al.  Flexible  and  cross-linked
            [5]   Christina O B, Huang X W, Nelson W, et al. Polyaniline nanofibers:   N-doped  carbon  nanofiber  network  for  high  performance  freestanding
                 Broadening  applications  for  conducting  polymers[J].  Chemical   supercapacitor electrode[J]. Nano Energy, 2015, 15: 66-74.
                 Society Reviews, 2017, 46: 1510-1525.         [25]  Song  X  L,  Guo  J  X,  Guo  M  X,  et  al.  Freestanding  needle-like
            [6]   Xiaobo  L,  Ayda  R,  Yuriy  Y  S,  et al.  Engineering  conformal   polyaniline-coal  based  carbon  nanofibers  composites  for  flexible
                 nanoporous polyaniline via oxidative chemical vapor deposition and   supercapacitor[J]. Electrochimica Acta, 2016, 206(10): 337-345.
                 its potential application in supercapacitors[J]. Chemical Engineering   [26]  Kan K, Wang L, Yu P, et al. 3D interlayer nanohybrids composed of
                 Science, 2019, 194(2): 156-164.                   sulfamic-acid-doped  PEdot  grown  on  expanded  graphite  for
            [7]   Wang H H, Lin J Y, Shen Z X. Polyaniline (PANi) based electrode   high-performance  supercapacitors[J].  Chem  Plus  Chem  2016,  81:
                 materials  for  energy  storage  and  conversion[J].  Journal  of  Science:   242-250.
                 Advanced Materials and Devices, 2016, 1(3): 225-255.   [27]  Kan  K,  Wang  L,  Yu  P,  et al.  2D  quasi-ordered  nitrogen-enriched
            [8]   Silas K S, Vibha K. Polyaniline-carbon based binder-free asymmetric   porous  carbon  nanohybrids  for  high  energy  density  supercapacitors[J].
                 supercapacitor in neutral aqueous electrolyte[J]. Electrochimica Acta,   Nanoscale, 2016, 8: 10166-10176.
                 2018, 268(1): 131-138.                        [28]  Shen Zhen (申振), Dai Yatang (戴亚堂), Zhang Huan (张欢), et al.
            [9]   Darshna  D  P,  Lichchhavi  S,  Parasharam  M  S.  Redox  additive   Synthesis  of  microporous  carbon-polyaniline  nanowire  composites
                 enhanced  capacitance:  Multi-walled  carbon  nanotubes/polyaniline   and  their  electrochemical  capacitive  performance[J].  Fine
                 nanocomposite  based  symmetric  supercapacitors  for  rapid  charge   Chemicals(精细化工), 2012, 29(12): 1181-1185.
                 storage[J]. Applied Surface Science, 2019, 469(1): 162-172.   [29]  Dirican  M,  Yanilmaz  M,    Zhang  X  W.  Free-standing  polyaniline-
            [10]  Frank  O  A,  Gracita  M  T,  Samuel  K,  et al.  Electrospun  carbon   porous  carbon  nanofiber  electrodes  for  symmetric  and  asymmetric
                 nanofiber-carbon  nanotubes  coated  polyaniline  composites  with   supercapacitors[J]. RSCA dvances, 2014, 4: 59427-59435.
                 improved   electrochemical   properties   for   supercapacitors[J].   [30]  Yan  X  B,  Tai  Z  X,  Chen  J  T,  et al.  Fabrication  of  carbon
                 Electrochimica Acta, 2018, 259(1): 1110-1119.     nanofiber-polyaniline composite flexible paper for supercapacitor[J].
            [11]  Ma J, Tang S C, Syed J A, et al. Asymmetric hybrid capacitors based   Nanoscale, 2011, 3(1): 212-216.
                 on  novel  bearded  carbon  fiber  cloth-pinhole  polyaniline  electrodes   [31]  Sun Li (孙立), Xu Liyang (徐立洋), Li Hongyang (李宏扬), et al.
                 with  excellent  energy  density[J].  RSC  Advances,  2016,  6:  82995-   Synthesis  and  energy  storage  properties  of  nitrogen-doped  porous
                 83002.                                            graphite  carbon[J].  Fine  Chemicals( 精细化工 ),  2018,  35(10):
            [12]  Chau T, Richa S, Daniel L, et al. Polyaniline-coated freestanding porous   1659-1666.
                 carbon  nanofibers  as  efficient  hybrid  electrodes  for  supercapacitors[J].   [32]  Zhao Qiang (赵强), Lv Mangeng (吕满庚). Synthesis of three-dimensional
                 Journal of Power Sources, 2015, 293(20): 373-379.   ordered  polyaniline/graphene  nanocomposite  for  supercapacitor
            [13]  Yang C, Li D G. Flexible and foldable supercapacitor electrodes from   electrode[J]. Fine Chemicals(精细化工), 2016, 33(6): 635-642.
                 the porous 3D network of cellulose nanofibers, carbon nanotubes and   [33]  Wang  H  H,  Zhu  E  W,  Yang  J  Z,  et al.  Bacterial  cellulose
                 polyaniline[J]. Materials Letters, 2015, 155(15): 78-81.   nanofiber-supported  polyaniline  nanocomposites  with  flake-shaped
            [14]  Jin  K,  Zhang  W  J,  Wang  Y  X,  et al.  In-situ  hybridization  of   morphology  as  supercapacitor  electrodes[J].  Journal  of  Physical
                 polyaniline  nanofibers  on  functionalized  reduced  graphene  oxide   Chemistry C, 2012, 116: 13013-13019.
                 films  for  high-performance  supercapacitor[J].  Electrochimica  Acta,   [34]  Lin  W  H,  Xu  K,  Peng  J,  et al.  Hierarchically  structured  carbon
                 2018, 285(20): 221-229.                           nanofiber-silsesquioxane-polyaniline   nanohybrids   for   flexible
            [15]  Zhang L L, Huang D, Hu N T, et al. Three-dimensional structures of   supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2015,
                 graphene/polyaniline hybrid films constructed by steamed water for   3: 8438-8449.
                 high-performance  supercapacitors[J].  Journal  of  Power  Sources,   [35]  Ji  E  Y,  Injoon  J,  Minjae  K,  et al.  Electrochemically  polymerized
                 2017, 342 (28): 1-8.                              vine-like nanostructured polyaniline on activated carbon nanofibers
            [16]  Xiong C Y, Li T H, Zhu Y C, et al. Two-step approach of fabrication   for supercapacitor[J]. Electrochimica Acta, 2013, 111(30): 136-143.
                 of  interconnected  nanoporous  3D  reduced  graphene  oxide-carbon   [36]  Miao F J, Shao C L, Li X H, et al. Polyaniline-coated electrospun
                 nanotube-polyaniline  hybrid  as  a  binder-free  supercapacitor   carbon nanofibers with high mass loading and enhanced capacitive
                 electrode[J].  Journal  of  Alloys  and  Compounds,  2017,  695(25):   performance  as  freestanding  electrodes  for  flexible  solid-state
                 1248-1259.                                        supercapacitors[J]. Energy, 2016, 95(15): 233-241.
            [17]  Cai X, Zhang C Q, Zhang S S, et al. Application of carbon fibers to   [37]  Yang D, Ni W, Cheng J L, et al. Omnidirectional porous fiber scrolls
                 flexible,  miniaturized  wire/fiber-shaped  energy  conversion  and  storage   of  polyaniline  nanopillars  array-N-doped  carbon  nanofibers  for
                 devices[J]. Journal of Materials Chemistry A, 2017, 5: 2444-2459.   fiber-shaped  supercapacitors[J].  Materials  Today  Energy,  2017,  5:
            [18]  Wang  Z  H, Qie L,  Yuan L X,  et al.  Functionalized  N-doped   196-204.
   96   97   98   99   100   101   102   103   104   105   106