Page 64 - 《精细化工》2019年第11期
P. 64

·2212·                            精细化工   FINE CHEMICALS                                  第 36 卷

            化剂用量占芯材质量 5%、乳化转速 1400 r/min、固                     [8]   Wang Junxia (王俊霞), Wang Jun (王军), Huang Chongxing (黄崇
                                                                   杏),  et al.  Preparation  and  characterization  of  MWCNT/stearic
            化剂用量占尿素质量 12%。
                                                                   acid-octadecylalcohol@urea  formaldehyde  resin  phase  change
                (3)与癸酸微胶囊 S 相比,癸酸微胶囊 P 的整                          microencapsules[J]. Acta Materiae Compositae Sinica (复合材料学
            体分散性良好且大小均一,渗漏率为 6.95%,降低                              报), 2019, 36(3): 730-738.
                                                               [9]   Su J  F,  Zhou J  W,  Huang  Z,  et al.  Fabrication  and  interfacial
            了 57.2%,包覆率为 69.7%,提高了 132.3%,说明                       morphologies  of  methanol–melamine–formaldehyde  (MMF)  shell
            癸酸微胶囊 P 具有良好的防渗性能和储热性能。                                micro PCMs/epoxy composites[J]. Colloid & Polymer Science, 2011,
                                                                   427(2): 60-63.
                (4)相变微胶囊材料的稳定性、耐久性及力学                          [10]  Wang Lixin (王立新), Ren Xiaoliang (任晓亮), Ren Li (任丽), et al.
            性能是下一步研究方向。                                            Preparation  and  penetrability  of  microencapsulated  phase  change
                                                                   materials[J].Acta  Materiae  Compositae  Sinica  (复合材料学报),
            参考文献:                                                  2006, 23(2): 53-58.
                                                               [11]  Fang  C,  Wolcott  M.  Polyethylene/paraffin  binary  composites for
            [1]   Memon S A, Lo T Y, Cui H, et al. Preparation, characterization and   phase  change  material  energy  storage  in  building:  A  morphology,
                 thermal  properties  of  dodecanol/cement  as  novel  form-stable   thermal  properties,  and  paraffin  leakage  study[J].  Solar  Energy
                 composite phase change material[J]. Energy and Buildings, 2013, 66:   Materials & Solar Cells, 2015, 137: 79-85.
                 697-705.                                      [12]  Tian B, Yang W, Luo L, et al. Synergistic enhancement of thermal
            [2]   Zhao C Y, Zhang G H. Review on microencapsulated phase change   conductivity for expanded graphite and carbon fiber in paraffin/EVA
                 materials  (MEPCMs):  Fabrication,  characterization  and  applications[J].   form-stable phase change materials[J]. Solar Energy, 2016, 127: 48-55.
                 Renewable & Sustainable Energy Reviews, 2011, 15(8): 3813-3832.    [13]  Palanikkumaran M , Gupta K K , Agrawal A K , et al. Highly stable
            [3]   Xin Cheng (辛成), Lu Shaofeng (陆少锋), Shen Tianwei (申天伟),   hexamethylolmelamine  microcapsules  containing  n-octadecane
                 et al.  Preparation  and  properties  of  network  polyurethane  shell   prepared  by  in  situ  encapsulation[J].  Journal  of  Applied  Polymer
                 microencapsulated  phase  change  materials  via  an  interfacial   Science, 2010, 114(5): 2997-3002.
                 polymerization[J].  Fine  Chemicals  ( 精细化 工 ),  2018,  35(7):   [14]  Wang Xianfeng (王先锋), Zhao Tao (赵涛). Effects of prepolymerization
                 1121-1125.                                        conditions on the encapsulation efficiency of phase change microcapsules
            [4]   Sami S, Sadrameli S M, Etesami N. Thermal properties optimization   based  on  melamine-formaldehyde[J].  Polymer  Materials  Science  &
                 of  microencapsulated  a  renewable  and  non-toxic  phase  change   Engineering (高分子材料科学与工程), 2017, 33(10): 149-153.
                 material  with  a  polystyrene  shell  for  thermal  energy  storage   [15]  Wang Yanan (王雅男), Wang Jianping (王建平), Li wei (李伟), et al.
                 systems[J]. Applied Thermal Engineering, 2018, 130: 1416-1424.   Progress  of  synthesis  methods  of  polypyrrole  microcapsule  and  its
            [5]   Fang  T, Liu L,  Alva G,  et al.  Synthesis  and  properties  of   application[J]. Materials Reports (材料导报), 2015, 29(1): 86-91.
                 microencapsulated  octadecane  with  silica  shell  as  shape–stabilized   [16]  Hui Long (惠龙). Thermal conductivity enhancement phase change
                 thermal energy storage materials[J]. Solar Energy Materials & Solar   materials and its application[D]. Nanjing: Southeast University (东南
                 Cells, 2017, 160: 1-6.                            大学), 2015.
            [6]   Zhan Shiping (詹世平), Zhou Zhiyi (周智轶), Huang Xing (黄星), et   [17]  Yan  Ying  (鄢瑛),  Zhang  Huiping  (张会平),  Liu  Jian  (刘剑).
                 al. Advances in preparation of microcapsule phase change materials   Orthogonal  test  analysis  of  microcapsules  prepared  for  the  phase
                 by  in-situ  polymerization[J].  Materials  Reports  (材料导报),  2012,   change heat storage material[J].Acta Energiae Solaris Sinica (太阳能
                 26(23): 76-78.                                    学报), 2010, 31(6): 692-696.
            [7]   Wang  Yongfeng  (王永凤),  Zhou  Xuemei  (周学梅),  Wei  Wenzheng   [18]  Wang  Xuan  (王轩),  Zhu  Jinhua  (朱金华),  Wang  Zixiao  (王紫潇).
                 (魏文政),  et al.  Preparation  and  thermal  property  of  paraffin/UF   Effect of core preparation conditions on the performance of paraffin
                 phase  change  microcapsules[J].  Surface  Technology  (表面技术),   microcapsules  in  polyurea[J].  Polymer  Materials  Science  &
                 2012, 41(4): 107-109.                             Engineering (高分子材料科学与工程), 2016, 32(5): 124-129.


            (上接第 2198 页)                                       [14]  Li  Y  J, Ma  L, Gan M  Y,  et al.  Magnetic  PANI  controlled  by
                                                                   morphology  with  enhanced  microwave  absorbing  property[J].
            [9]   Sun Shibing (孙诗兵), Tian Yingliang (田英良), Gao Qiao (高乔), et   Materials Letters, 2015, 140: 192-195.
                 al. Properties of foam wave absorbing materials prepared based on   [15]  Zhang  Y,  Wen  B  Y,  Qiu  M  N,  et al.  A  novel  polyaniline-coated
                 ferrite[J]. Journal of Beijing University of Technology (北京工业大  bagasse  fiber  composite  with  core-shell  heterostructure  provides
                 学学报), 2017, 43(2): 299-305.                       effective  electromagnetic  shielding  performance[J].  ACS  Applied
            [10]  Laur  V,  Benzerga  R,  Lebullenger  R,  et al.  Green  foams  for   Materials & Interfaces, 2017, 9(1): 809-818.
                 microwave absorbing applications: Synthesis and characterization[J].   [16]  Joseph  N,  Varghese  J,  Sebastian  M  T,  et al.  In  situ  polymerized
                 Materials Research Bulletin, 2017, 96: 100-106.   polyaniline  nanofiber-based  functional  cotton  and  nylon  fabrics as
            [11]  Lamri Y, Benzerga R, Ayadi A, et al. Synthesis and characterization   millimeter -wave absorbers[J]. Polymer Journal, 2017, 49(4): 391-399.
                 of foam glass composites for electromagnetic absorption application[J].   [17]  He  W,  Li  J  P,  Tian  J  X,  et al.  Characteristics  and  properties  of
                 Materials Research Express, 2019, 6(3): 035201.   wood/polyaniline  electromagnetic  shielding  composites  synthesized
            [12]  Chen  K,  Li  X  H,  Lv  D  S,  et al.  Study  on  microwave  absorption   via  in-situ  polymerization[J].  Polymer  Composite,  2018,  39(2):
                 properties of metal-containing foam glass[J]. Materials Science and   537-543.
                 Engineering  B-Advanced  Functional  Solid-State  Materials,  2011,   [18]  Chen  Kuo  (陈阔).  Study  on  microwave  absorption  properties  of
                 176(15): 1239-1242.                               metal  reinforced  foam  glass  matrix  composites[D].  Tianjin:  Tianjin
            [13]  Li X H, Lv D S, Chen K. Effects of graphite additive on dielectric   University (天津大学), 2012.
                 properties  and  microwave  absorption  properties  of  zinc-containing   [19]  Chen Jianjun (陈建军). Study on microstructure and acid resistance
                 foam  glass[J].  Journal  of  Non-Crystalline  Solids,  2012,  358(21):   of borosilicate foam glass[D]. Tianjin :Tianjin university (天津大学),
                 2917-2921.                                        2008.
   59   60   61   62   63   64   65   66   67   68   69