Page 173 - 201903
P. 173

第 3 期                    付   英,等:  源于钛白粉废料的含钛混凝剂效果及污泥特性                                  ·519·


            貌,其中铁、钛等可能参与了该网状聚合物的聚合                                 the coagulation performance of tetravalent titanium and zirconium salts
                                                                   with alum[J]. Chemical Engineering Journal, 2014, 254, 635-646.
            反应。在投药范围内,M-PTF 的除浊和除色率均低                          [10]  Ministry of Housing and Urban-Rural Development of the People’s
                                                                   Republic of China (中华人民共和国住房与城乡建设部). Notification
            于 PAC,但在投药量为 2 mmol/L 时,M-PTF 的 COD Cr
                                                                   of  the  construction  and  operation  of  the  fourth  quarter  of  2017
            去除率比 PAC 高 29%。                                        national  urban  sewage  treatment  facilities  by  Ministry  of  Housing
                (2)M-PTF 污泥呈现蓬松的棉花团状态,边界                           and Urban-Rural Development [R]. Beijing, 2018: 1-16.
                                                               [11]  Wang Q L, Ye L, Jiang G J, et al. A free nitrous acid (FNA)-based
            和形状清晰,絮团厚重程度及形态尺寸、絮粒之间
                                                                   technology for reducing sludge production[J]. Water Research, 2013,
            的紧密程度均大于 PAC。与 PAC 相比,M-PTF 具                          47: 3663-3672.
                                                               [12]  Fall C, Silva-Hernández B C, Hooijmans C M, et al. Sludge reduction
            有优异的沉降性能及沉降结束后较小的污泥体积:
                                                                   by  ozone:  Insights  and  modeling  of  the  dose-response  effects[J].
            沉淀最初 5  min 内,M-PTF 污泥沉降速率达到                           Journal of Environmental Management, 2018, 206: 103-112.
            44 mL/min,而 PAC 仅为 2 mL/min。8 min 时,M-PTF          [13]  Farda M A,  Aminzadeh B,  Taheri M,  et al.  MBR  excess  sludge
                                                                   reduction by combination of electrocoagulation and fenton oxidation
            沉降速率降到 10  mL/min 左右,20  min 降到 0,而                    processes[J].  Separation  and  Purification  Technology,  2013,  120:
            PAC 均在 13 mL/min 以下。投药量对 M-PTF 污泥含                     378-385.
                                                               [14]  Nguyen  M  T,  Mohd  Y  N  H,  Miyazaki  T,  et al.  Enhancement  of
            水率的影响较大,对 PAC 影响很小。在实验投药范                              sludge reduction and methane production by removing extracellular
            围(2.0~4.5 mmol/L)内,M-PTF 污泥含水率比 PAC                    polymeric  substances  from  waste  activated  sludge[J].  Bioresource
                                                                   Technology, 2015, 177: 194-203.
            下降了 1.11%~2.41%,对应的污泥体积则下降了                        [15]  Huang P, Li L, Kotay S M, et al. Carbon mass balance and microbial
            71.28%~84.38%,较大的体积下降率将降低后续污                           ecology in a laboratory scale reactor achieving simultaneous sludge
                                                                   reduction and nutrient removal[J]. Water Research, 2014, 53: 153-167.
            泥浓缩和脱水的成本和难度。M-PTF 具有较佳除污                          [16]  Shirasaki  N,  Matsushita  T,  Matsui  Y,  et al.  Effect  of  aluminum
            性能、较大污泥沉降率和较低含水率均是由其微观                                 hydrolyte species on human enterovirus removal from water during
                                                                   the coagulation process[J]. Chemical Engineering Journal, 2016, 284,
            本质特征所决定。                                               786-793.
                (3)本文仅针对生活污水进行研究,针对染料                          [17]  Stumpner E B, Kraus T E C, Liang Y L, et al. Sediment accretion and
                                                                   carbon storage in constructed wetlands receiving water treated with
            废水进行了部分研究,得出相似结论,可以预测,                                 metal-based  coagulants[J].  Ecological  Engineering,  2018,  111:
            M-PTF 在其他污水(某些工业污水)应用上应具有                              176-185.
                                                               [18]  Volk C, Bell K, Ibrahim E, et al. Impact of enhanced and optimized
            类似结果和前景,后续需要继续研究。                                      coagulation  on  removal  of  organic  matter  and  its  biodegradable
                                                                   fraction in drinking water[J]. Water Research, 2000, 34: 3247-3257.
            参考文献:                                              [19]  Chang  G  R,  Liu  J  C,  Lee  D  J.  Co-conditioning  and  dewatering  of
                                                                   chemical  sludge  and  waste  activated  sludge[J].  Water  Research,
            [1]   Guo Rui (郭睿), Guo Yu (郭煜), Song Bo (宋博), et al. Synthesis
                 and  flocculation  properties  of  succinyl-chitosan[J].  Fine  Chemicals   2001, 35: 786-794.
                 (精细化工), 2018, 35(3): 474-481.                 [20]  Bao Y P, Niu J F, Xu Z S, et al. Removal of perfluorooctane sulfonate
            [2]   Wang Xuechuan (王学川), Dai Chunji (代春吉), Wei Fei (魏菲), et   (PFOS) and perfluorooctanoate (PFOA) from water by coagulation:
                 al.  Optimization  of  preparation  conditions  of  hydrophobically   Mechanisms  and  influencing  factors[J].  Journal  of  Colloid  and
                 modified cationic collagen flocculant[J]. Fine Chemicals (精细化工),   Interface Science, 2014, 434: 59-64.
                 2018, 35(5): 838-845.                         [21]  Kataoka  S,  Lee  E,  Tejedor-Tejedor  M  I,  et al.  Photocatalytic
            [3]   Fu Y, Su M M. Utilization of “titanium white” waste as raw material   degradation  of  hydrogen-sulfide  and  in  situ  FT-IR  analysis  of
                 in  preparation  of  poly-Ti-Fe  (M-PTF)  coagulant  changes  in   reaction  products  on  surface  of  TiO 2[J].  Applied  Catalysis  B:
                 characteristics  during  aging  process[J].  Waste  and  Biomass   Environmental, 2016, 61: 159-163.
                 Valorization, 2017, 8(8): 2701-2709.          [22]  Huang X, Gao B Y, Yue Q Y, et al. Effect of Si/Ti molar ratio on
            [4]   Fu  Y,  Zhang  J  C,  Wang  Y  Z,  et al.  Resource  preparation  of   enhanced coagulation performance, floc properties and sludge reuse
                 poly-Al–Zn–Fe  (PAZF)  coagulant  from  galvanized  aluminum  slag:   of  a  novel  hybrid  coagulant:  polysilicate  titanium  sulfate[J].
                 Characteristics, simultaneous removal efficiency and mechanism of   Desalination, 2014, 352: 150-157.
                 nitrogen  and  organic  matters[J].  Chemical  Engineering  Journal,   [23]  Lu  Yongquan  (卢涌泉),  Deng  Zhenhua  (邓振华).  Analysis  of
                 2012, 203: 301-308.                               practical IR spectrum[M]. Beijing: Electric Industry Press (北京:电
            [5]   Suzette  M  K,  Sally  J.  Mineral  commodity  summaries  2015[R].   子工业出版社), 1989.
                 ISBN:  978-1-4113-3877-7,  US.  Geological  Survey,  Reston,   [24]  Shen Zhong (沈忠), Zhong Jinyi (钟近艺), Wang Lingyun (王泠沄),
                 Washington D. C., Virginia, 2015, 170-173.        et al. In-situ FTIR and SSNMR study of photocatalytic degradation
            [6]   Middlemas S, Zak F Z, Fan P J. Life cycle assessment comparison of   of  2-CEES  and  DMMP  on  zirconium-doped  TiO 2[J].  Journal  of
                 emerging and traditional titanium dioxide manufacturing processes[J].   Molecular Catalysis (分子催化), 2016, 30(3): 260-268.
                 Journal of Cleaner Production, 2015, 89: 137-147.     [25]  Kataoka S, Lee E, Tejedor-Tejedor I, et al. Photocatalytic degradation
            [7]   Wang Jianwei (王建伟). The comprehensive utilization of the waste   of hydrogen-sulfide and in situ FT-IR analysis of reaction products
                 acid of TiO 2 production[D]. Harbin: Harbin Institute of Technology   on  surface  of  TiO 2[J].  Applied Catalysis B:  Environmental,  2005,
                 (哈尔滨:哈尔滨工业大学), 2009.                              61(1): 159-163.
            [8]   Li  Jukang  (李具康), Dai Jiao  (代佼).  Research  on  treatment  and   [26]  Vorontsov  A  V,  Lion  C,  Savinov  E  N,  et al.  Pathways  of
                 utilization  of  “three  wastes”  of  tianium  dioxide  production  by   photocatalytic  gas  phasedestruction  of  HD  stimulant  2-chloroethyl
                 sulfuric acid process[J]. Environmental Science Survey (环境科学导  ethyl sulfide[J]. Journal of Catalysis, 2003, 220 (2): 414-423.
                 刊), 2014, 33(4): 63-66.                       [27]  Liu  Zhanmeng  (刘占孟),  Ye  Xin  (叶鑫), Nie Fahui (聂发辉).
            [9]   Su  Manman  (苏漫漫).  Preparation  of  water  purification  agents  of   Flocculation  performance  and  microstructural  morphology  of
                 titanium ferric and application in wastewater[D]. Jinan: University of   PFM-PDMDAAC for treatment of raw water with low temperature
                 Jinan (济南:济南大学), 2015.                            and low turbidity in winter[J]. China Water & Wastewater (中国给水
                 Hussain S, Leeuwen J V, Christopher W K C, et al. Comparison of   排水), 2016, 32(3): 61-65.
   168   169   170   171   172   173   174   175   176   177   178