Page 210 - 201906
P. 210
·1216· 精细化工 FINE CHEMICALS 第 36 卷
[7] Fleischauer P D, Kan H K A, Shepard J R. Quantum yields of silver performance under visible light[J]. Dalton Transactions, 2014,
ion reduction on titanium dioxide and zinc oxide single crystals[J]. 43(43): 16441-16449.
Journal of the American Chemical Society, 1972, 94(1): 283-285. [19] Li D Z, Zhen Y, Fu X Z. Photoluminescence of nano-TiO 2[J].
[8] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WO x-TiO 2, Chinese Journal of Material Research, 2000, 14(6): 639-642.
under visible light irradiation[J]. Journal of Photochemistry & [20] Li H, Zhu L, Ma C, et al. TiO 2, hollow microspheres: synthesis,
Photobiology A Chemistry, 2001, 141(2): 209-217. photocatalytic activity, and selectivity for a mixture of organic
[9] Xiong C, Coutinho D, Balkus K J. Fabrication of hollow spheres dyes[J]. Monats Chemi-Chem Mont, 2014, 145(1): 29-37.
composed of nanosized ZSM-5 crystals via laser ablation[J]. [21] Qin S, Xin F, Liu Y, et al. Photocatalytic reduction of CO₂ in
MicroporousMesoporous Mater. 2005, 86: 14-22. methanol to methyl formate over CuO-TiO₂ composite catalysts[J].
[10] Tian C S, Sheng W L, Tan H, et al. Fabrication of lattice-doped Journal of Colloid & Interface Science, 2011, 356(1): 257-261.
TiO 2nanofibers by vapor-phase growth for visible light-driven [22] Xu S, Du A J, Liu J, et al. Highly efficient CuO incorporated TiO 2
N 2conversion to ammonia[J]. ACS Applied Materials & Interfaces, nanotube photocatalyst for hydrogen production from water[J].
2018, 10: 37453-37460. International Journal of Hydrogen Energy, 2011, 36(11): 6560-6568.
[11] Yang Y, Zhang S, Wan L, et al. Preparation of continuous TiO 2, fibers [23] Liu Chaoheng (刘超恒), Guo Xiaoming (郭晓明), Zhong Chenglin
by sol–gel method and itsphotocatalytic degradation on (钟成林), et al. Methanol synthesis from CO 2 Hydrogenation over
formaldehyde[J]. Applied Surface Science, 2012, 258(8): 3469-3474. Supported CuO/TiO 2 catalysts[J]. Journal of Inorganic Materials (无
[12] Li Y, Guo M, Zhang M, et al. Hydrothermal synthesis and 机材料学报), 2016, 32(8): 1405-1412.
characterization of TiO 2, nanorod arrays on glass substrates[J]. [24] Li Xiaoli (李晓莉), Xie Fangyang (谢方艳), Gong Li (龚力), et al.
Materials Research Bulletin, 2009, 44(6): 1232-1237. Effect of argon ion bombardment on copper oxide studied by X-ray
[13] Zhao J, Jia C, Duan H, et al. Structural properties and photoelectron spectroscopy[J]. Journal of Instrumental Analysis (分
photoluminescence of TiO 2, nanofibers were fabricated by 析测试学报), 2013, 32(5): 535-540.
electrospinning[J]. Journal of Alloys & Compounds, 2008, 461(1): [25] Shao Z, Yang X, Zhu G, et al. Photon-induced interfacial charge
447-450. transfer mechanism of porous silicon/TiO 2, nanoparticles for
[14] Khan S U M, Al-Shahry M, Ingler W B, et al. Efficient photoelectrochemical performance[J]. Journal of Photochemistry and
photochemical water splitting by a chemically modified n-TiO 2[J]. Photobiology A: Chemistry, 2017, 338: 72-84.
Science, 2003, 34(2): 2243-2245. [26] Zhou Changcheng (周长城), Tang Zhigang (汤志刚). Experimental
[15] Cheng P, Li W, Zhou T, et al. Physical and photocatalytic properties research on flue gas desulfurization byethylenediamine/phosphoric
of zinc ferrite doped titania under visible light irradiation[J]. Journal acid solution[J]. Fine Chemicals (精细化工), 2003, 20(8): 509-512.
of Photochemistry & Photobiology A Chemistry, 2004, 168(1): [27] Yang Q, Bown M, Ali A, et al. A carbon-13 NMR study of carbon
97-101. dioxide absorption and desorption with aqueous amine solutions[J].
[16] Abdullah H, Khan M R, Pudukudy M, et al. CeO 2-TiO 2 as a visible Energy Procedia, 2009, 1(1): 955-962.
light active catalyst for the photoreduction of CO 2 to methanol[J]. [28] Li X, Liu H, Luo D, et al. Adsorption of CO 2, on
Journal of Rare Earths, 2015, 33(11): 1155-1161. heterostructureCdS(Bi 2S 3)/TiO 2, nanotube photocatalysts and their
[17] Jing L Q, Qu Y C , Wang B Q , et al. Review of photoluminescence photocatalytic activities in the reduction of CO 2 to methanol under
performance of nano-sized semiconductor materials and its visible light irradiation[J]. Chemical Engineering Journal, 2012,
relationships with photocatalytic activity[J]. Solar Energy Materials 180(6): 151-158.
& Solar Cells, 2006, 90(12): 1773-1787. [29] Low J, Cheng B, Yu J. Surface modification and enhanced
[18] Wang F, Liang L, Shi L, et al. CO 2-assisted synthesis of mesoporous photocatalytic CO 2 reduction performance of TiO 2: A review[J].
carbon/C-doped ZnO composites for enhanced photocatalytic Applied Surface Science, 2017, 392: 658-686.
(上接第 1179 页) theory behind the polar paradox[J]. J Agric Food Chem, 2009,
57(23): 11335-11342.
[12] Costa M, Losada-Barreiro S, Paiva-Martins F, et al. A direct
[17] Zhang Ying (张莹). Study on the efficient separation and antioxidant
correlation between the antioxidant efficiencies of caffeic acid and its
capacity of rosemary antioxidants[D]. Harbin:Northeast Forestry
alkyl esters and their concentrations in the interfacial region of olive
University (哈尔滨:东北林业大学), 2008.
oil emulsions. The pseudophase model interpretation of the “cut-off”
[18] Heins A, McPhail D B, Sokolowski T, et al. The location of phenolic
effect[J]. Food Chemistry, 2015, 175: 233-242.
antioxidants and radicals at interfaces determines their activity[J].
[13] Mohdaly A A A, Sarhan M A, Mahmoud A, et al. Antioxidant
Lipids, 2007, 42(6): 573-582.
efficacy of potato peels and sugar beet pulp extracts in vegetable oils
protection[J]. Food Chemistry, 2010, 123(4): 1019-1026. [19] Sonia L B, Marlene C, Carlos B D, et al. Distribution and antioxidant
efficiency of resveratrol in stripped corn oil emulsions[J].
[14] Saito S, Okamoto Y, Kawabata J. Effects of alcoholic solvents
onantiradical abilities of protocatechuic acid and its alkyl esters[J]. Antioxidants, 2014, 3(2): 212-228.
Bioscience, Biotechnology, and Biochemistry, 2004, 68(6): 1221- [20] Yi Jianhua (易建华). Effects of molecular environment on oxidation
1227. on stability of lipids in water-in-oil emulsions[D]. Xi’an:Shaanxi
[15] Panya A, Laguerre M, Bayrasy C, et al. An investigation of the University of Science & Technology (西安:陕西科技大学), 2016.
versatile antioxidant mechanisms of action of rosmarinate alkyl [21] Ding Jian (丁俭), Qi Baokun (齐宝坤), Wang Limin (王立敏), et al.
esters in oil-in-water emulsions[J]. J Agric Food Chem, 2012, Correlation of the degree of five kinds of different vegetable oil
60(10): 2692-2700. oxidation to proportions change of fatty acid[J]. Journal of the
[16] Laguerre M, Giraldo L J L, Lecomte J, et al. Chain length affects Chinese Cereals and Oils Association (中国粮油学报), 2017, 32(8):
antioxidant properties of chlorogenate esters in emulsion: the cutoff 84-91.