Page 210 - 201906
P. 210

·1216·                            精细化工   FINE CHEMICALS                                  第 36 卷

            [7]   Fleischauer P D, Kan H K A, Shepard J R. Quantum yields of silver   performance  under  visible  light[J].  Dalton  Transactions,  2014,
                 ion reduction on titanium dioxide and zinc oxide single crystals[J].   43(43): 16441-16449.
                 Journal of the American Chemical Society, 1972, 94(1): 283-285.    [19]  Li  D  Z,  Zhen  Y,  Fu  X  Z.  Photoluminescence  of  nano-TiO 2[J].
            [8]   Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WO x-TiO 2,   Chinese Journal of Material Research, 2000, 14(6): 639-642.
                 under  visible  light  irradiation[J].  Journal  of  Photochemistry  &   [20]  Li  H,  Zhu  L,  Ma  C,  et al.  TiO 2,  hollow  microspheres:  synthesis,
                 Photobiology A Chemistry, 2001, 141(2): 209-217.     photocatalytic  activity,  and  selectivity  for  a  mixture  of  organic
            [9]   Xiong  C,  Coutinho  D,  Balkus  K  J.  Fabrication  of  hollow  spheres   dyes[J]. Monats Chemi-Chem Mont, 2014, 145(1): 29-37.
                 composed  of  nanosized  ZSM-5  crystals  via  laser  ablation[J].   [21]  Qin  S,  Xin  F,  Liu  Y,  et al.  Photocatalytic  reduction  of  CO₂  in
                 MicroporousMesoporous Mater. 2005, 86: 14-22.     methanol  to  methyl  formate  over  CuO-TiO₂  composite  catalysts[J].
            [10]  Tian  C  S,  Sheng  W  L,  Tan  H,  et al.  Fabrication  of  lattice-doped   Journal of Colloid & Interface Science, 2011, 356(1): 257-261.
                 TiO 2nanofibers  by  vapor-phase  growth  for  visible  light-driven   [22]  Xu S, Du A J, Liu J, et al. Highly efficient CuO incorporated TiO 2
                 N 2conversion to ammonia[J]. ACS Applied Materials & Interfaces,   nanotube  photocatalyst  for  hydrogen  production  from  water[J].
                 2018, 10: 37453-37460.                            International Journal of Hydrogen Energy, 2011, 36(11): 6560-6568.
            [11]  Yang Y, Zhang S, Wan L, et al. Preparation of continuous TiO 2, fibers   [23]  Liu Chaoheng (刘超恒), Guo Xiaoming (郭晓明), Zhong Chenglin
                 by  sol–gel  method  and  itsphotocatalytic  degradation  on   (钟成林),  et al.  Methanol  synthesis  from  CO 2  Hydrogenation  over
                 formaldehyde[J]. Applied Surface Science, 2012, 258(8): 3469-3474.     Supported CuO/TiO 2 catalysts[J]. Journal of Inorganic Materials (无
            [12]  Li  Y,  Guo  M,  Zhang  M,  et al.  Hydrothermal  synthesis  and   机材料学报), 2016, 32(8): 1405-1412.
                 characterization  of  TiO 2,  nanorod  arrays  on  glass  substrates[J].   [24]  Li Xiaoli (李晓莉), Xie Fangyang (谢方艳), Gong Li (龚力), et al.
                 Materials Research Bulletin, 2009, 44(6): 1232-1237.     Effect of argon ion bombardment on copper oxide studied by X-ray
            [13]  Zhao  J,  Jia  C,  Duan  H,  et al.  Structural  properties  and   photoelectron spectroscopy[J]. Journal of Instrumental Analysis (分
                 photoluminescence  of  TiO 2,  nanofibers  were  fabricated  by   析测试学报), 2013, 32(5): 535-540.
                 electrospinning[J].  Journal  of  Alloys  &  Compounds,  2008,  461(1):   [25]  Shao  Z,  Yang  X,  Zhu  G,  et al.  Photon-induced  interfacial  charge
                 447-450.                                          transfer  mechanism  of  porous  silicon/TiO 2,  nanoparticles  for
            [14]  Khan  S  U  M,  Al-Shahry  M,  Ingler  W  B,  et al.  Efficient   photoelectrochemical performance[J]. Journal of Photochemistry and
                 photochemical  water  splitting  by  a  chemically  modified  n-TiO 2[J].   Photobiology A: Chemistry, 2017, 338: 72-84.
                 Science, 2003, 34(2): 2243-2245.              [26]  Zhou Changcheng (周长城), Tang Zhigang (汤志刚). Experimental
            [15]  Cheng P, Li W, Zhou T, et al. Physical and photocatalytic properties   research  on  flue  gas  desulfurization  byethylenediamine/phosphoric
                 of zinc ferrite doped titania under visible light irradiation[J]. Journal   acid solution[J]. Fine Chemicals (精细化工), 2003, 20(8): 509-512.
                 of  Photochemistry  &  Photobiology  A  Chemistry,  2004,  168(1):   [27]  Yang Q, Bown M, Ali A, et al. A carbon-13 NMR study of carbon
                 97-101.                                           dioxide absorption and desorption with aqueous amine solutions[J].
            [16]  Abdullah H, Khan M R, Pudukudy M, et al. CeO 2-TiO 2 as a visible   Energy Procedia, 2009, 1(1): 955-962.
                 light  active  catalyst  for  the  photoreduction  of  CO 2  to  methanol[J].   [28]  Li  X,  Liu  H,  Luo  D,  et al.  Adsorption  of  CO 2,  on
                 Journal of Rare Earths, 2015, 33(11): 1155-1161.     heterostructureCdS(Bi 2S 3)/TiO 2,  nanotube  photocatalysts  and  their
            [17]  Jing L Q, Qu Y C , Wang B Q , et al. Review of photoluminescence   photocatalytic  activities  in  the  reduction  of  CO 2  to  methanol  under
                 performance  of  nano-sized  semiconductor  materials  and  its   visible  light  irradiation[J].  Chemical  Engineering  Journal,  2012,
                 relationships with photocatalytic activity[J]. Solar Energy Materials   180(6): 151-158.
                 & Solar Cells, 2006, 90(12): 1773-1787.       [29]  Low  J,  Cheng  B,  Yu  J.  Surface  modification  and  enhanced
            [18]  Wang F, Liang L, Shi L, et al. CO 2-assisted synthesis of mesoporous   photocatalytic  CO 2  reduction  performance  of  TiO 2:  A  review[J].
                 carbon/C-doped  ZnO  composites  for  enhanced  photocatalytic   Applied Surface Science, 2017, 392: 658-686.


            (上接第 1179 页)                                           theory  behind  the  polar  paradox[J].  J  Agric  Food  Chem,  2009,
                                                                   57(23): 11335-11342.
            [12]  Costa  M,  Losada-Barreiro  S,  Paiva-Martins  F,  et al.  A  direct
                                                               [17]  Zhang Ying (张莹). Study on the efficient separation and antioxidant
                 correlation between the antioxidant efficiencies of caffeic acid and its
                                                                   capacity  of  rosemary  antioxidants[D].  Harbin:Northeast  Forestry
                 alkyl esters and their concentrations in the interfacial region of olive
                                                                   University (哈尔滨:东北林业大学), 2008.
                 oil emulsions. The pseudophase model interpretation of the “cut-off”
                                                               [18]  Heins A, McPhail D B, Sokolowski T, et al. The location of phenolic
                 effect[J]. Food Chemistry, 2015, 175: 233-242.
                                                                   antioxidants  and  radicals  at  interfaces  determines  their  activity[J].
            [13]  Mohdaly  A  A  A,  Sarhan  M  A,  Mahmoud  A,  et al.  Antioxidant
                                                                   Lipids, 2007, 42(6): 573-582.
                 efficacy of potato peels and sugar beet pulp extracts in vegetable oils
                 protection[J]. Food Chemistry, 2010, 123(4): 1019-1026.     [19]  Sonia L B, Marlene C, Carlos B D, et al. Distribution and antioxidant
                                                                   efficiency  of  resveratrol  in  stripped  corn  oil  emulsions[J].
            [14]  Saito  S,  Okamoto  Y,  Kawabata  J.  Effects  of  alcoholic  solvents
                 onantiradical abilities of protocatechuic  acid and its alkyl esters[J].   Antioxidants, 2014, 3(2): 212-228.
                 Bioscience,  Biotechnology,  and  Biochemistry,  2004,  68(6):  1221-   [20]  Yi Jianhua (易建华). Effects of molecular environment on oxidation
                 1227.                                             on  stability  of  lipids  in  water-in-oil  emulsions[D].  Xi’an:Shaanxi
            [15]  Panya  A,  Laguerre  M,  Bayrasy  C,  et al.  An  investigation  of  the   University of Science & Technology (西安:陕西科技大学), 2016.
                 versatile  antioxidant  mechanisms  of  action  of  rosmarinate  alkyl   [21]  Ding Jian (丁俭), Qi Baokun (齐宝坤), Wang Limin (王立敏), et al.
                 esters  in  oil-in-water  emulsions[J].  J  Agric  Food  Chem,  2012,   Correlation  of  the  degree  of  five  kinds  of  different  vegetable  oil
                 60(10): 2692-2700.                                oxidation  to  proportions  change  of  fatty  acid[J].  Journal  of  the
            [16]  Laguerre  M,  Giraldo  L  J  L,  Lecomte  J, et al.  Chain  length  affects   Chinese Cereals and Oils Association (中国粮油学报), 2017, 32(8):
                 antioxidant properties of chlorogenate esters in emulsion: the cutoff   84-91.
   205   206   207   208   209   210   211   212   213   214   215