Page 69 - 201906
P. 69

第 6 期                   王   娜,等: PEPA-EG/EP 复合涂料的制备及其阻燃防腐性能                             ·1075·


            燃烧后形成的膨胀炭层最为致密,极限氧指数达到                                 Sinica (复合材料学报), 2018, 35 (7): 1738-1744.
            27.2%,垂直燃烧等级能达到 V-1 级,800  ℃时的残                    [12]  Wang  Z,  Han  E,  Ke  W.  Influence  of  expandable  graphite  on  fire
                                                                   resistance  and  water  resistance  of  flame-retardant  coatings[J].
            炭量最高,为 27.79%。                                         Corrosion Science, 2007, 49(5): 2237-2253.
                 (2)PEPA-EG/EP 复合涂料防腐蚀测试表明,                    [13]  Liu Xuejun (刘学军), Fu Ruoyu (付若愚), Xian Caijun (咸才军), et
                                                                   al.  The  application  of  expandable  graphite  in  fire  resistive
            随着 PEPA-EG 复合填料添加量的增加,复合涂料的
                                                                   intumescent coating for steel structures[J]. Fine Chemicals (精细化
            防腐蚀性能先提升后降低,其中,涂层试样 EP2 的                              工), 2005, 22(5): 328-330, 341.
                                             6
                                                   2
            防腐蚀性能最优,阻抗值为 9.24×10  Ω·cm 。                       [14]  Wang Na (王娜), Yu Fang (于芳), Wang Sheng (王升), et al. Caged
                                                                   pentaerythritol  phosphate/expandable  graphite  synergistic  flame
                 (3)附着力测试表明,复合涂料的附着力均高                             retardant natural rubber[J]. Acta Materiae Compositae Sinica (复合
            于水性环氧树脂清漆,其中,涂层试样 EP2 的附着                              材料学报), 2018, 35(11): 1-7.
            力性能最优。                                             [15]  Standardization Administration of the People’s Republic of China (中
                                                                   国国家标准化管理委员会).  Determination  of  rubber  burning
                 钢结构防腐蚀与防火保护在业界已引起广泛关                              performance  (橡 胶燃烧性能的测 定):  GB/T  10707—2008[S].
            注,研究钢结构防腐防火涂料成为今后重要的研究                                 Beijing: Standards Press of China (中国标准出版社), 2008.
                                                               [16]  ASTM  D4541-02:  Standard  Test  Method  for  Pull-Off  Strength  of
            内容,本文为钢结构防腐防火涂料的研究提供重要
                                                                   Coatings  Using  Portable  Adhesion  Testers[S].  Philadelphia,  ASTM,
            参考。本实验室接下来将进一步设计具有凝聚相阻                                 2002.
            燃性能与无机片层材料阻隔性能于一体的钢结构防                             [17]  Duquesne S, Bras M L, Bourbigot S, et al. Thermal degradation of
                                                                   polyurethane  and  polyurethane/expandable  graphite  coatings[J].
            腐防火一体化涂料,提高防腐与阻燃效率。                                    Polymer Degradation & Stability, 2001, 74(3): 493-499.
                                                               [18]  Li Qingying (李清英), Xia Zhengbin (夏正斌), Fan Fangqiang (范方
            参考文献:                                                  强),  et al.  Effect  of  sepiolite  and  expandable  graphite  on  the
            [1]   Wang M, Liu X. Exploration on the development of steel structure in   water-based intumescent flame-retardant coatings for steel structure
                 construction field in China[J]. Value Engineering, 2014, 79(6): 1044-   [J]. Fine Chemicals (精细化工), 2012, 29(11): 1131-1136.
                 1066.                                         [19]  Liu  Yanlin,  He  Jiyu,  Yang  Rongjie.  Effects  of  dimethyl
            [2]   Tong  Bin  (童彬).  Preparation  and  properties  of  waterborne  epoxy   methylphosphonate,  aluminum  hydroxide,  ammonium  polyphosphate,
                 multifunctional  steel  structural  coatings[D].  Beijing:University  of   and  expandable  graphite  on  the  flame  retardancy  and  thermal
                 Chinese Academy of Sciences (中国科学院大学), 2016.      properties  of  polyisocyanurate−polyurethane  foams[J].  Industrial  &
            [3]   Wu Liancheng (吴连成). Construction technology of steel structure   Engineering Chemistry Research, 2015, 54: 5876-5884.
                 coating and painting technology[J]. technology entrepreneur (科技创  [20]  Balabanovich  A  I.  Thermal  decomposition  study  of  intumescent
                 业家), 2011, (8): 51.                               additives:  pentaerythritol  phosphate  and  its  blend  with  melamine
            [4]   Tian Fuxun (田福迅), Li Minfeng (李敏风). Development trend of   phosphate[J]. Thermochimica Acta, 2005, 435(2): 188-196.
                 water-borne steel structure coatings and coating technology[J]. China   [21]  Wang Na (王娜), Zhang Yinan (张义男), Luan Honghe (栾鸿赫), et
                 Coatings (中国涂料), 2016, 31(8): 25-29.              al.  Preparation  and  anticorrosion  properties  of  waterborne  epoxy
            [5]   Huang  Wei  (黄卫).  Preparation  and  research  of  fire-retardant  and   coatings filled with organic microspheres[J]. Acta Materiae Compositae
                 anticorrosive  coatings  of  Chloroether  resin  for  steel  structures[J].   Sinica (复合材料学报), 2017, 31(1): 1-8.
                 China Petroleum and Chemical Standard and Quality, 2012, 33(11):   [22]  Tsao-Cheng  H,  Yu  A,  Tzu-Chun  Y,  et al.  Advanced  anticorrosive
                 24-28.                                            coatings prepared from electroactive epoxy–SiO 2 hybrid nanocomposite
            [6]   Qin  Wenqing  (覃文清),  Li  Feng  (李风).  Study  on  anticorrosive   materials[J]. Electrochimica Acta, 2011, 56(17): 6142-6149.
                 properties of fire retardant coatings for steel structures[J]. Coatings   [23]  Wang N, Fu W, Zhang J, et al. Corrosion performance of waterborne
                 Technology & Abstracts, 2013, 34(3): 10-12.       epoxy coatings containing polyethylenimine treated mesoporous-TiO 2,
            [7]   Wang Na (王娜), Wang Shuwei (王树伟), Teng Haiwei (滕海伟), et   nanoparticles on mild steel[J]. Progress in Organic Coatings, 2015,
                 al. Preparation of chitosan-based flame retardant and its application   89: 114-122.
                 in  fireproof  coatings[J].  Fine  Chemicals  (精细化工),  2017,  34(11):   [24]  Tzu-Chun Yeh,Tsao-Cheng Huang,Hsiu-Ying Huang,et al.Electrochemical
                 1-8.                                              investigations  on  anticorrosive  and  electrochromic  properties  of
            [8]   Wang  N,  Cheng  K,  Wu  H,  et al.  Effect  of  nano-sized  mesoporous   electroactive polyuria[J]. Polymer Chemistry, 2012, 3(8): 2209-2216.
                 silica MCM-41 and MMT on corrosion properties of epoxy coating   [25]  Tsao-Cheng  H,  Tzu-Chun  Y,  Hsiu-Ying  H,  et al.  Electrochemical
                 [J]. Progress in Organic Coatings, 2012, 75(4): 386-391.   studies  on  aniline-pentamer-based  electroactive  polyimide  coating:
            [9]   Wang  N,  Gao  H,  Zhang  J,  et al.  Effect  of  graphene  oxide/ZSM-5   corrosion  protection  and  electrochromic  properties[J].  Electrochim.
                 hybrid  on  corrosion  resistance  of  waterborne  epoxy  coating[J].   Acta, 2011, 56(27): 10151-10158.
                 Coatings: 2018, 8(5): 179.                    [26]  He Jie (何杰), Qi Rui (阎瑞), Ma Shining (马世宁). Electrochemical
            [10]  Zhang Weixing (张威星). Flame retardant modification and properties   method  for  corrosion  behavior  of  epoxy  coating/substrate  in  3.5%
                 of polystyrene[D]. Taiyuan: Taiyuan University of Technology (太原  NaCl solution[J]. China Surface Engineering (中国表面工程), 2006,
                 理工大学), 2016.                                      19(2): 47-50.
            [11]  Liu Lizhu (刘立柱), Zhang Jiawen (张佳文), Xu Hang (徐航), et al.   [27]  Wang N, Zhang Y, Chen J, et al. Dopamine modified metal-organic
                 Preparation  and  anticorrosion  mechanism  of  graphite  microchip/   frameworks  on  anti-corrosion  properties  of  waterborne  epoxy
                 epoxy composite anticorrosive coatings[J]. Acta Materiae Compositae     coatings[J]. Progress in Organic Coatings, 2017, 109: 126-134.
   64   65   66   67   68   69   70   71   72   73   74