Page 69 - 201906
P. 69
第 6 期 王 娜,等: PEPA-EG/EP 复合涂料的制备及其阻燃防腐性能 ·1075·
燃烧后形成的膨胀炭层最为致密,极限氧指数达到 Sinica (复合材料学报), 2018, 35 (7): 1738-1744.
27.2%,垂直燃烧等级能达到 V-1 级,800 ℃时的残 [12] Wang Z, Han E, Ke W. Influence of expandable graphite on fire
resistance and water resistance of flame-retardant coatings[J].
炭量最高,为 27.79%。 Corrosion Science, 2007, 49(5): 2237-2253.
(2)PEPA-EG/EP 复合涂料防腐蚀测试表明, [13] Liu Xuejun (刘学军), Fu Ruoyu (付若愚), Xian Caijun (咸才军), et
al. The application of expandable graphite in fire resistive
随着 PEPA-EG 复合填料添加量的增加,复合涂料的
intumescent coating for steel structures[J]. Fine Chemicals (精细化
防腐蚀性能先提升后降低,其中,涂层试样 EP2 的 工), 2005, 22(5): 328-330, 341.
6
2
防腐蚀性能最优,阻抗值为 9.24×10 Ω·cm 。 [14] Wang Na (王娜), Yu Fang (于芳), Wang Sheng (王升), et al. Caged
pentaerythritol phosphate/expandable graphite synergistic flame
(3)附着力测试表明,复合涂料的附着力均高 retardant natural rubber[J]. Acta Materiae Compositae Sinica (复合
于水性环氧树脂清漆,其中,涂层试样 EP2 的附着 材料学报), 2018, 35(11): 1-7.
力性能最优。 [15] Standardization Administration of the People’s Republic of China (中
国国家标准化管理委员会). Determination of rubber burning
钢结构防腐蚀与防火保护在业界已引起广泛关 performance (橡 胶燃烧性能的测 定): GB/T 10707—2008[S].
注,研究钢结构防腐防火涂料成为今后重要的研究 Beijing: Standards Press of China (中国标准出版社), 2008.
[16] ASTM D4541-02: Standard Test Method for Pull-Off Strength of
内容,本文为钢结构防腐防火涂料的研究提供重要
Coatings Using Portable Adhesion Testers[S]. Philadelphia, ASTM,
参考。本实验室接下来将进一步设计具有凝聚相阻 2002.
燃性能与无机片层材料阻隔性能于一体的钢结构防 [17] Duquesne S, Bras M L, Bourbigot S, et al. Thermal degradation of
polyurethane and polyurethane/expandable graphite coatings[J].
腐防火一体化涂料,提高防腐与阻燃效率。 Polymer Degradation & Stability, 2001, 74(3): 493-499.
[18] Li Qingying (李清英), Xia Zhengbin (夏正斌), Fan Fangqiang (范方
参考文献: 强), et al. Effect of sepiolite and expandable graphite on the
[1] Wang M, Liu X. Exploration on the development of steel structure in water-based intumescent flame-retardant coatings for steel structure
construction field in China[J]. Value Engineering, 2014, 79(6): 1044- [J]. Fine Chemicals (精细化工), 2012, 29(11): 1131-1136.
1066. [19] Liu Yanlin, He Jiyu, Yang Rongjie. Effects of dimethyl
[2] Tong Bin (童彬). Preparation and properties of waterborne epoxy methylphosphonate, aluminum hydroxide, ammonium polyphosphate,
multifunctional steel structural coatings[D]. Beijing:University of and expandable graphite on the flame retardancy and thermal
Chinese Academy of Sciences (中国科学院大学), 2016. properties of polyisocyanurate−polyurethane foams[J]. Industrial &
[3] Wu Liancheng (吴连成). Construction technology of steel structure Engineering Chemistry Research, 2015, 54: 5876-5884.
coating and painting technology[J]. technology entrepreneur (科技创 [20] Balabanovich A I. Thermal decomposition study of intumescent
业家), 2011, (8): 51. additives: pentaerythritol phosphate and its blend with melamine
[4] Tian Fuxun (田福迅), Li Minfeng (李敏风). Development trend of phosphate[J]. Thermochimica Acta, 2005, 435(2): 188-196.
water-borne steel structure coatings and coating technology[J]. China [21] Wang Na (王娜), Zhang Yinan (张义男), Luan Honghe (栾鸿赫), et
Coatings (中国涂料), 2016, 31(8): 25-29. al. Preparation and anticorrosion properties of waterborne epoxy
[5] Huang Wei (黄卫). Preparation and research of fire-retardant and coatings filled with organic microspheres[J]. Acta Materiae Compositae
anticorrosive coatings of Chloroether resin for steel structures[J]. Sinica (复合材料学报), 2017, 31(1): 1-8.
China Petroleum and Chemical Standard and Quality, 2012, 33(11): [22] Tsao-Cheng H, Yu A, Tzu-Chun Y, et al. Advanced anticorrosive
24-28. coatings prepared from electroactive epoxy–SiO 2 hybrid nanocomposite
[6] Qin Wenqing (覃文清), Li Feng (李风). Study on anticorrosive materials[J]. Electrochimica Acta, 2011, 56(17): 6142-6149.
properties of fire retardant coatings for steel structures[J]. Coatings [23] Wang N, Fu W, Zhang J, et al. Corrosion performance of waterborne
Technology & Abstracts, 2013, 34(3): 10-12. epoxy coatings containing polyethylenimine treated mesoporous-TiO 2,
[7] Wang Na (王娜), Wang Shuwei (王树伟), Teng Haiwei (滕海伟), et nanoparticles on mild steel[J]. Progress in Organic Coatings, 2015,
al. Preparation of chitosan-based flame retardant and its application 89: 114-122.
in fireproof coatings[J]. Fine Chemicals (精细化工), 2017, 34(11): [24] Tzu-Chun Yeh,Tsao-Cheng Huang,Hsiu-Ying Huang,et al.Electrochemical
1-8. investigations on anticorrosive and electrochromic properties of
[8] Wang N, Cheng K, Wu H, et al. Effect of nano-sized mesoporous electroactive polyuria[J]. Polymer Chemistry, 2012, 3(8): 2209-2216.
silica MCM-41 and MMT on corrosion properties of epoxy coating [25] Tsao-Cheng H, Tzu-Chun Y, Hsiu-Ying H, et al. Electrochemical
[J]. Progress in Organic Coatings, 2012, 75(4): 386-391. studies on aniline-pentamer-based electroactive polyimide coating:
[9] Wang N, Gao H, Zhang J, et al. Effect of graphene oxide/ZSM-5 corrosion protection and electrochromic properties[J]. Electrochim.
hybrid on corrosion resistance of waterborne epoxy coating[J]. Acta, 2011, 56(27): 10151-10158.
Coatings: 2018, 8(5): 179. [26] He Jie (何杰), Qi Rui (阎瑞), Ma Shining (马世宁). Electrochemical
[10] Zhang Weixing (张威星). Flame retardant modification and properties method for corrosion behavior of epoxy coating/substrate in 3.5%
of polystyrene[D]. Taiyuan: Taiyuan University of Technology (太原 NaCl solution[J]. China Surface Engineering (中国表面工程), 2006,
理工大学), 2016. 19(2): 47-50.
[11] Liu Lizhu (刘立柱), Zhang Jiawen (张佳文), Xu Hang (徐航), et al. [27] Wang N, Zhang Y, Chen J, et al. Dopamine modified metal-organic
Preparation and anticorrosion mechanism of graphite microchip/ frameworks on anti-corrosion properties of waterborne epoxy
epoxy composite anticorrosive coatings[J]. Acta Materiae Compositae coatings[J]. Progress in Organic Coatings, 2017, 109: 126-134.