Page 206 - 201907
P. 206
·1452· 精细化工 FINE CHEMICALS 第 36 卷
–1
–1
缩振动峰分别位移到 3163 cm 与 1323 cm 处,这 [6] Xing Yongguo (邢拥国), Zhang Zhibin (张志宾), Hua Rong (花榕),
et al. Study on the adsorption properties of polyaniline/TiO 2
可能是 OCN 中的含氮官能团与 U(Ⅵ)之间的相互作 composites for U(Ⅵ)[J]. Atomic Energy Science and Technology (原
–1
用 [34] 。1056 cm 处 C—O 键伸缩振动的特征吸收峰 子能科学技术), 2018, 52 (7): 1223-1230.
–1
向高波数 1089 cm 移动,表明 C—O 键参与了 U(Ⅵ) [7] Wang P, Yin L, Wang J, et al. Superior immobilization of U(Ⅵ) and
243 Am(Ⅲ) on polyethyleneimine modified lamellar carbon nitride
–1
的吸附,1650 cm 处 C==O 伸缩振动峰向 1618 cm –1 composite from water environment[J]. Chemical Engineering
Journal, 2017, 326: 863-874.
处移动,可能是羧基与 U(Ⅵ)之间的相互作用所致。
[8] Huang Q, Chen Y, Yu H, et al. Magnetic graphene oxide/MgAl-
从吸附前后 FTIR 光谱的变化来看,—NH 2 、C—N、 layered double hydroxide nanocomposite: One-pot solvothermal
2+
2+
synthesis, adsorption performance and mechanisms for Pb , Cd ,
缔合—OH、C==O、C—O 等为 OCN 吸附 U(Ⅵ)过
2+
and Cu [J]. Chemical Engineering Journal, 2018, 341: 1-9.
程中主要的吸附位点。 [9] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C 3N 4)-
based photocatalysts for artificial photosynthesis and environmental
4 结论 remediation: are we a step closer to achieving sustainability?[J].
Chemical Reviews, 2016, 116(12): 7159-7329.
[10] Zhao Z, Sun Y, Dong F. Graphitic carbon nitride based nanocomposites:
(1)采用热处理法制备了 g-C 3 N 4 ,并通过强酸 a review[J]. Nanoscale, 2015, 7(1): 15-37.
刻蚀与氧化处理成功制备了 OCN 材料,材料具有良 [11] Wen J, Xie J, Chen X, et al. A review on g-C 3N 4-based
photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123.
好的再生循环性能,OCN 吸附 U(Ⅵ)的最优条件为 [12] Shen C, Chen C, Wen T, et al. Superior adsorption capacity of
pH 为 5、投加量为 200 mg/L、U(Ⅵ)初始质量浓度 g-C 3N 4 for heavy metal ions from aqueous solutions[J]. Journal of
Colloid & Interface Science, 2015, 456: 7-14.
为 10 mg/L、吸附时间为 10 min。表明 OCN 作为一 [13] He Q, Zhou F, Zhan S, et al. Photoassisted oxygen reduction reaction
种高性能吸附剂在含 U(Ⅵ)废水处理方面拥有广阔 on mpg-C 3N 4: The effects of elements doping on the performance of
ORR[J]. Applied Surface Science, 2018, 430: 325-334.
的应用前景。 [14] Kumar R, Barakat M A, Alseroury F A. Oxidized g-C 3N 4/polyaniline
(2)吸附量随着温度从 20 ℃升高到 40 ℃而 nanofiber composite for the selective removal of hexavalent
chromium[J]. Scientific Reports, 2017, 7(1): 1-11.
0
0
0
增加,∆H >0,∆S >0 和∆G <0 揭示了吸附过程是一 [15] Safdari F, Shamkhali A N, Tafazzoli M, et al. Adsorption of pollutant
个自发吸热的过程。温度为 303 K 时,OCN 对 U(Ⅵ) cations from their aqueous solutions on graphitic carbon nitride
explored by density functional theory[J]. Journal of Molecular
的最大吸附量为 277.78 mg/g,吸附过程符合 Langmuir Liquids, 2018, 260: 423-435.
模型,吸附方式属于单层吸附。OCN 材料对 U(Ⅵ) [16] Zou Y, Wang X, Ai Y, et al. β-cyclodextrin modified graphitic carbon
nitride for the removal of pollutants from aqueous solution:
的吸附符合准二级动力学模型,吸附主要受化学作
experimental and theoretical calculation study[J]. Journal of
用控制。 Materials Chemistry A, 2016, 4(37): 14170-14179.
(3)SEM、XRD 与 FTIR 分析表明,g-C 3 N 4 在 [17] Anbia M, Haqshenas M. Adsorption studies of Pb(Ⅱ) and Cu(Ⅱ)
ions on mesoporous carbon nitride functionalized with melamine-
改性前后表面形貌与层间结构发生变化,表面官能 based dendrimer amine[J]. International Journal of Environmental
团也发生了变化,证明 OCN 材料的合成成功。 Science & Technology, 2015, 12(8): 2649-2664.
2+
[18] Zou Y, Wang P, Yao W, et al. Synergistic immobilization of UO 2 ,
SEM-EDS 分析表明,处理前后 OCN 上形貌变化明 by novel graphitic carbon nitride @ layered double hydroxide
显,处理后有 U 峰的出现,证明 U(Ⅵ)能够很好地 nanocomposites from wastewater[J]. Chemical Engineering Journal,
2017, 330: 573-584.
吸附在 OCN 材料上。FTIR 谱图分析表明,配位络 [19] Li H J, Sun B W, Sui L, et al. Preparation of water-dispersible porous
合为主要的吸附机理之一,OCN 表面丰富的含氮与 g-C 3N 4 with improved photocatalytic activity by chemical oxidation
[J]. Physical Chemistry Chemical Physics Pccp, 2015, 17(5): 3309-
含氧基团与 U(Ⅵ)发生络合作用。 3315.
[20] Zou Y Y, Wang X X, Wu F, et al. Controllable synthesis of Ca-Mg-Al
参考文献: layered double hydroxides and calcined layered double oxides for the
efficient removal of U(Ⅵ) from wastewater solutions[J]. ACS
[1] Liu Hongjuan (刘红娟), Xie Shuibo (谢水波), Zhang Xichen (张希 Sustainable Chem Eng, 2016, 5(1): 1173-1185.
晨), et al. Research progress on adsorption of uranium by graphite [21] Wen L, Xiao Z, Wang T, et al. Adsorption of U(Ⅵ) by multilayer
oxide composites[J]. Material Engineering (材料工程), 2018, 46 (5): titanate nanotubes: Effects of inorganic cations, carbonate and natural
11-21. organic matter[J]. Chemical Engineering Journal, 2016, 286(2):
[2] Zhang X, Wang J, Li R, et al. Removal of uranium (Ⅵ) from 427-435.
aqueous solutions by surface modified magnetic Fe 3O 4 particles[J]. [22] Wei X, Liu Q, Zhang H, et al. Rapid and efficient uranium(Ⅵ)
New Journal of Chemistry, 2013, 37(12): 3914-3919. capture by phytic acid/polyaniline/FeOOH composites[J]. Journal of
[3] Hadi P, Barford J, Mckay G. Toxic heavy metal capture using a novel Colloid & Interface Science, 2017, 511: 1-11.
electronic waste-based material-mechanism, modeling and comparison [23] Zhao Y G, Li J X, Zhang S W, et al. Efficient enrichment of uranium
[J]. Environmental Science & Technology, 2013, 47(15): 8248-8255. (Ⅵ) on amidoximated magnetite/graphene oxide composites[J], RSC
[4] Rosenberg E, Pinson G, Tsosie R, et al. Uranium remediation by ion Adv, 2013, 3(41): 18952-18959.
exchange and sorption methods: A critical review[J]. Johnson [24] Yao W, Wu Y, Pang H, et al. In-situ reduction synthesis of manganese
Matthey Technology Review, 2016, 60(1): 59-77. dioxide@polypyrrole core/shell nanomaterial for highly efficient
[5] Li X, Ding C, Liao J, et al. Microbial reduction of uranium (Ⅵ) by enrichment of U(Ⅵ) and Eu(Ⅲ)[J]. Science China Chemistry, 2018,
Bacillus sp. dwc-2: A macroscopic and spectroscopic study[J]. 61(7): 812-823.
Journal of Environmental Science(环境科学学报), 2017, 53(3):
9-15. (下转第 1458 页)