Page 206 - 201907
P. 206

·1452·                            精细化工   FINE CHEMICALS                                  第 36 卷

                                                  –1
                                       –1
            缩振动峰分别位移到 3163 cm 与 1323 cm 处,这                    [6]   Xing Yongguo (邢拥国), Zhang Zhibin (张志宾), Hua Rong (花榕),
                                                                   et al.  Study  on  the  adsorption  properties  of  polyaniline/TiO 2
            可能是 OCN 中的含氮官能团与 U(Ⅵ)之间的相互作                            composites for U(Ⅵ)[J]. Atomic Energy Science and Technology (原
                          –1
            用 [34] 。1056 cm 处 C—O 键伸缩振动的特征吸收峰                      子能科学技术), 2018, 52 (7): 1223-1230.
                            –1
            向高波数 1089 cm 移动,表明 C—O 键参与了 U(Ⅵ)                   [7]   Wang P, Yin L, Wang J, et al. Superior immobilization of U(Ⅵ) and
                                                                   243 Am(Ⅲ) on polyethyleneimine modified lamellar carbon nitride
                           –1
            的吸附,1650 cm 处 C==O 伸缩振动峰向 1618 cm            –1        composite  from  water  environment[J].  Chemical  Engineering
                                                                   Journal, 2017, 326: 863-874.
            处移动,可能是羧基与 U(Ⅵ)之间的相互作用所致。
                                                               [8]   Huang  Q,  Chen  Y,  Yu  H,  et al.  Magnetic  graphene  oxide/MgAl-
            从吸附前后 FTIR 光谱的变化来看,—NH 2 、C—N、                         layered  double  hydroxide  nanocomposite:  One-pot  solvothermal
                                                                                                       2+
                                                                                                           2+
                                                                   synthesis,  adsorption  performance  and  mechanisms  for  Pb ,  Cd ,
            缔合—OH、C==O、C—O 等为 OCN 吸附 U(Ⅵ)过
                                                                       2+
                                                                   and Cu [J]. Chemical Engineering Journal, 2018, 341: 1-9.
            程中主要的吸附位点。                                         [9]   Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C 3N 4)-
                                                                   based photocatalysts for artificial photosynthesis and environmental
            4   结论                                                 remediation:  are  we  a  step  closer  to  achieving  sustainability?[J].
                                                                   Chemical Reviews, 2016, 116(12): 7159-7329.
                                                               [10]  Zhao Z, Sun Y, Dong F. Graphitic carbon nitride based nanocomposites:
                (1)采用热处理法制备了 g-C 3 N 4 ,并通过强酸                      a review[J]. Nanoscale, 2015, 7(1): 15-37.
            刻蚀与氧化处理成功制备了 OCN 材料,材料具有良                          [11]  Wen  J,  Xie  J,  Chen  X,  et al.  A  review  on  g-C 3N 4-based
                                                                   photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123.
            好的再生循环性能,OCN 吸附 U(Ⅵ)的最优条件为                         [12]  Shen  C,  Chen  C,  Wen  T,  et al.  Superior  adsorption  capacity  of
            pH 为 5、投加量为 200  mg/L、U(Ⅵ)初始质量浓度                       g-C 3N 4  for  heavy  metal  ions  from  aqueous  solutions[J].  Journal  of
                                                                   Colloid & Interface Science, 2015, 456: 7-14.
            为 10 mg/L、吸附时间为 10 min。表明 OCN 作为一                  [13]  He Q, Zhou F, Zhan S, et al. Photoassisted oxygen reduction reaction
            种高性能吸附剂在含 U(Ⅵ)废水处理方面拥有广阔                               on mpg-C 3N 4: The effects of elements doping on the performance of
                                                                   ORR[J]. Applied Surface Science, 2018, 430: 325-334.
            的应用前景。                                             [14]  Kumar R, Barakat M A, Alseroury F A. Oxidized g-C 3N 4/polyaniline
                (2)吸附量随着温度从 20  ℃升高到 40  ℃而                        nanofiber  composite  for  the  selective  removal  of  hexavalent
                                                                   chromium[J]. Scientific Reports, 2017, 7(1): 1-11.
                                    0
                            0
                     0
            增加,∆H >0,∆S >0 和∆G <0 揭示了吸附过程是一                    [15]  Safdari F, Shamkhali A N, Tafazzoli M, et al. Adsorption of pollutant
            个自发吸热的过程。温度为 303 K 时,OCN 对 U(Ⅵ)                        cations  from  their  aqueous  solutions  on  graphitic  carbon  nitride
                                                                   explored  by  density  functional  theory[J].  Journal  of  Molecular
            的最大吸附量为 277.78 mg/g,吸附过程符合 Langmuir                    Liquids, 2018, 260: 423-435.
            模型,吸附方式属于单层吸附。OCN 材料对 U(Ⅵ)                         [16]  Zou Y, Wang X, Ai Y, et al. β-cyclodextrin modified graphitic carbon
                                                                   nitride  for  the  removal  of  pollutants  from  aqueous  solution:
            的吸附符合准二级动力学模型,吸附主要受化学作
                                                                   experimental  and  theoretical  calculation  study[J].  Journal  of
            用控制。                                                   Materials Chemistry A, 2016, 4(37): 14170-14179.
                (3)SEM、XRD 与 FTIR 分析表明,g-C 3 N 4 在             [17]  Anbia  M,  Haqshenas  M.  Adsorption  studies  of  Pb(Ⅱ)  and  Cu(Ⅱ)
                                                                   ions  on  mesoporous  carbon  nitride  functionalized  with  melamine-
            改性前后表面形貌与层间结构发生变化,表面官能                                 based  dendrimer  amine[J].  International  Journal  of  Environmental
            团也发生了变化,证明 OCN 材料的合成成功。                                Science & Technology, 2015, 12(8): 2649-2664.
                                                                                                           2+
                                                               [18]  Zou Y, Wang P, Yao W, et al. Synergistic immobilization of UO 2 ,
            SEM-EDS 分析表明,处理前后 OCN 上形貌变化明                           by  novel  graphitic  carbon  nitride  @  layered  double  hydroxide
            显,处理后有 U 峰的出现,证明 U(Ⅵ)能够很好地                             nanocomposites from wastewater[J]. Chemical Engineering Journal,
                                                                   2017, 330: 573-584.
            吸附在 OCN 材料上。FTIR 谱图分析表明,配位络                        [19]  Li H J, Sun B W, Sui L, et al. Preparation of water-dispersible porous
            合为主要的吸附机理之一,OCN 表面丰富的含氮与                               g-C 3N 4 with improved photocatalytic activity by chemical oxidation
                                                                   [J]. Physical Chemistry Chemical Physics Pccp, 2015, 17(5): 3309-
            含氧基团与 U(Ⅵ)发生络合作用。                                      3315.
                                                               [20]  Zou Y Y, Wang X X, Wu F, et al. Controllable synthesis of Ca-Mg-Al
            参考文献:                                                  layered double hydroxides and calcined layered double oxides for the
                                                                   efficient  removal  of  U(Ⅵ)  from  wastewater  solutions[J].  ACS
            [1]   Liu Hongjuan (刘红娟), Xie Shuibo (谢水波), Zhang Xichen (张希  Sustainable Chem Eng, 2016, 5(1): 1173-1185.
                 晨), et al. Research progress on adsorption of uranium by graphite   [21]  Wen L, Xiao  Z,  Wang  T, et al. Adsorption of U(Ⅵ) by multilayer
                 oxide composites[J]. Material Engineering (材料工程), 2018, 46 (5):   titanate nanotubes: Effects of inorganic cations, carbonate and natural
                 11-21.                                            organic  matter[J].  Chemical  Engineering  Journal,  2016,  286(2):
            [2]   Zhang  X,  Wang  J,  Li  R,  et al.  Removal  of  uranium  (Ⅵ)  from   427-435.
                 aqueous solutions by surface  modified  magnetic Fe 3O 4 particles[J].   [22]  Wei  X,  Liu  Q,  Zhang  H,  et al.  Rapid  and  efficient  uranium(Ⅵ)
                 New Journal of Chemistry, 2013, 37(12): 3914-3919.     capture by phytic acid/polyaniline/FeOOH composites[J]. Journal of
            [3]   Hadi P, Barford J, Mckay G. Toxic heavy metal capture using a novel   Colloid & Interface Science, 2017, 511: 1-11.
                 electronic waste-based material-mechanism, modeling and comparison   [23]  Zhao Y G, Li J X, Zhang S W, et al. Efficient enrichment of uranium
                 [J]. Environmental Science & Technology, 2013, 47(15): 8248-8255.     (Ⅵ) on amidoximated magnetite/graphene oxide composites[J], RSC
            [4]   Rosenberg E, Pinson G, Tsosie R, et al. Uranium remediation by ion   Adv, 2013, 3(41): 18952-18959.
                 exchange  and  sorption  methods:  A  critical  review[J].  Johnson   [24]  Yao W, Wu Y, Pang H, et al. In-situ reduction synthesis of manganese
                 Matthey Technology Review, 2016, 60(1): 59-77.     dioxide@polypyrrole  core/shell  nanomaterial  for  highly  efficient
            [5]   Li X, Ding C, Liao J, et al. Microbial reduction of uranium (Ⅵ) by   enrichment of U(Ⅵ) and Eu(Ⅲ)[J]. Science China Chemistry, 2018,
                 Bacillus  sp.  dwc-2:  A  macroscopic  and  spectroscopic  study[J].   61(7): 812-823.
                 Journal  of  Environmental  Science(环境科学学报),  2017,  53(3):
                 9-15.                                                                       (下转第 1458 页)
   201   202   203   204   205   206   207   208   209   210   211