Page 171 - 精细化工2019年第8期
P. 171
第 8 期 范圣茜,等: 单宁为模板水热合成纳米 TiO 2 及其对铀的吸附 ·1659·
Journal of Environmental Sciences, 2019, 75: 115-123. [20] Wen J, Li Q, Li H, et al. Nano-TiO 2 imparts amidoximated wool
[7] Peng L, Ni Y, Wei X, et al. Removal of U(Ⅵ) from aqueous solution fibers with good antibacterial activity and adsorption capacity for
using TiO 2 modified β-zeolite[J]. Radiochimica Acta, 2017, 105(12): uranium ( Ⅵ ) recovery[J]. Industrial & Engineering Chemistry
1005-1013. Research, 2018, 57(6): 1826-1833.
[8] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, [21] Lamb A C M, Grieser F, Healy T W. The adsorption of uranium (Ⅵ)
properties, modifications, and applications[J]. Cheminform, 2007, onto colloidal TiO 2, SiO 2 and Carbon Black[J]. Colloids & Surfaces
107(7): 2891-2959. A: Physicochemical & Engineering Aspects, 2016, 499: 156-162.
[9] Ross A R S, Ikonomou M G, Orians K J. Characterization of dissolved [22] Paschalidou P, Liatsou I, Pashalidis I, et al. Effect of surface and
tannins and their metal-ion complexes by electrospray ionization mass textural characteristics on uranium adsorption by nano-porous
spectrometry[J]. Analytica Chimica Acta, 2000, 411(1/2): 91-102. titania[J]. Journal of Radioanalytical& Nuclear Chemistry, 2017,
[10] Shi Bi(石碧),Di Ying(狄莹).Plant polyphenol(植物多酚)[M].Beijing: 314(2): 1141-1147.
Science Press, 2000. [23] Yang Lanhao (杨兰浩), Hu Bin (胡斌), Jiang Zucheng (江祖成), et
[11] Du Xiao (杜晓). Fractionation of larch bark proanthocyanidins and al.Adsorption behavior of metal ions on TiO 2 powder of different
the research on fine application of fractions[D]. Chengdu: Sichuan crystal structure and particle diameter[J].Journal of Chinese Rare
University (四川大学), 2006. Earth Society (中国稀土学报), 2004, 22(5): 704-707.
[12] Liao Xuepin (廖学品). Preparation of adsorption based on collagen [24] Triki M, Tanazefti H, Kochkar H. Design of beta-cyclodextrin
fibers and investigations of their adsorption characteristics[D]. modified TiO 2 nanotubes for the adsorption of Cu(Ⅱ): Isotherms and
Chengdu: Doctoral Dissertation of Sichuan University, 2004. kinetics study[J]. Journal of Colloid & Interface Science, 2017, 493:
[13] Lin Huaxiang (林华香), Wang Xuxu (王绪绪), Fu Xianzhi (付贤智). 77-84.
Properties and distribution of the surface hydroxyl groups of TiO 2[J]. [25] Liu P, Yuan N, Xiong W, et al. Removal of U(Ⅵ) from aqueous
Progress in Chemistry (化学进展), 2007, 19(5): 665-670. solution using TiO 2 modified beta-zeolite[J]. Radiochimica Acta,
[14] Linghu W S, Sun Y, Yang H, et al. Macroscopic and spectroscopic 2017, 105(12): 1005-1013.
exploration on the removal performance of titanate nanotubes [26] Wang Likun (王丽坤), Li Li (李丽), Xin Cui (辛翠), et al. Kinetics
towards Zn( Ⅱ )[J]. Journal of Molecular Liquids, 2017, 244: of adsorption of low concentration phenol in water by activated
146-153. pyrolytic tire char[J]. Journal of PLA University of Science and
[15] Liu Jianliang (刘建亮), Luo Mingbiao (罗明标), Yuan Zizun (袁自 Technology (natural science edition) (解放军理工大学学报: 自然
遵), et al. Synthesized of titanatenanowhiskers and adsorption of 科学版), 2012, 13(2): 209-213.
Th(IV)[J]. Journal of Functional Materials (功能材料), 2013, 44(23): [27] Amayri S, Arnold T, Reich T, et al. Spectroscopic characterization of
3496-3501. the uranium carbonate andersonite Na 2Ca[UO 2(CO 3) 3] x6H 2O[J].
[16] Chen Z T, Huang Y, Liu Y Y, et al. Enhanced photocatalytic activity Environmental Science & Technology, 2004, 38(22): 6032-6036.
based on TiO 2 hollow hierarchical microspheres/reduced graphene [28] Song S A, Huang S Y, Zhang R, et al. Simultaneous removal of
hybrid[J/OL]. Materials Research Express, 2019, 6(2): DOI:10.1088/ U(Ⅵ) and humic acid on defective TiO 2–x investigated by batch and
2053-1591/aaedd1. spectroscopy techniques[J]. Chemical Engineering Journal, 2017,
[17] Hashida K, Ohara S, Makino R. Base-catalyzed reactions of 325: 576-587.
procyanidin B3: formation of a novel catechinic acid-catechin dimer [29] Khamirchi R, Hosseini B A, Alahabadi A, et al. Adsorption property
[J]. Journal of Wood Chemistry and Technology, 2006, 26(2): 125- of Br-PADAP-impregnated multiwall carbon nanotubes towards
140. uranium and its performance in the selective separation and
[18] Bacelo H A M, Santos S C R, Botelho C M S, et al. Tannin-based determination of uranium in different environmental samples[J].
biosorbents for environmental applications-a review[J]. Chemical Ecotoxicology and Environmental Safety, 2018, 150: 136-143.
Engineering Journal. 2016, 303: 575-587. [30] Cheng Yuanmei (程远梅), Sun Xia (孙霞), Liao Xuepin (廖学品), et
[19] Li Feng (李峰), Hu Zheng (胡征), Jing Su (景苏), et al. Controlled al. Adsorption of uranium from wastewater containing fluorine and
growth and self-assembly of nanoparticles[J]. Chinese Journal of uranium by collagen fiber immobilized titanium[J]. Journal of Chemical
Inorganic Chemistry (无机化学学报), 2001, 17(3): 315-324. Industry and Engineering (化工学报), 2011, 62(2): 386-392.
(上接第 1649 页) [18] Manolis J M, Mercouri G K. Metal sulfide ion exchangers: superior
sorbents for the capture of toxic and nuclear waste-related metal
[11] Manos M J, Ding N, Kanatzidis M G. Layered metal sulfides: ions[J]. Chemical Science, 2016, 7(8):4804-4824.
Exceptionally selective agents for radioactive strontium removal[J]. [19] Liang Chengqiang (梁成强), Jia Mingchun (贾铭椿), Du Zhihui (杜
Proceedings of the National Academy of Sciences of the United 志辉), et al. Crosslinked chitosan-potassium nickel hexacyanaferrate
States of America, 2008, 105(10): 3696-3699. (Ⅱ) spherical composite adsorbent and its adsorption property for
+
[12] Mertz J L, Fard Z H, Malliakas C D, et al. Selective removal of Cs , Cs [J]. Atomic Energy Science and Technology (原子能科学技术),
+
2+
2+
Sr , and Ni by K 2xMg xSn 3–xS 6 (x = 0.5–1) (KMS-2) relevant to 2017, 51(2): 241-247.
nuclear waste remediation[J]. Chemistry of Materials, 2013, 25(10), [20] Ghorbani M, Shams A, Seyedin O, et al. Magnetic ethylene
2116-2127. diamine-functionalized graphene oxide as novel sorbent for removal
[13] Sarma D, Malliakas C D, Subrahmanyam K S, et al. K 2xSn 4–xS 8–x (x = of lead and cadmium ions from wastewater samples[J]. Environ Sci
+
0.65-1): A new metal sulfide for rapid and selective removal of Cs , Pollut Res Int, 2018, 25(4): 5655-5667.
2+
2+
Sr and UO 2 ions[J]. Chemical Science, 2016, 7(2), 1121. [21] Sharma M, Ramakrishnan S, Remanan S, et al. Nano tin ferrous
[14] Zhang M D, Gu P, Zhang Z G, et al. Effective, rapid and selective
2+
adsorption of radioactive Sr , from aqueous solution by a novel oxidede decorated graphene oxide sheets for efficient arsenic (III)
metal sulfide adsorbent[J]. Chemical Engineering Journal, 2018: removal[J]. Nano-Structures & Nano-Objects, 2018, 13: 82-92.
351(1): 668-677. [22] Ho Y S. Second-order kinetic model for the sorption of cadmium
[15] Gamble F R, Geballe T H. Inclusion compounds[M]. Treatise on onto tree fern: A comparison of linear and non-linear methods[J].
Solid State Chemistry, 1976. Water Research, 2006, 40(1): 119-125.
[16] Gogoi D, Rao S V S, Kumar T, et al. Studies on adsorptive removal [23] de Luna M D G, Samaniego M L, Ong D C, et al. Kinetics of sulfur
of radioactive cobalt from alkaline waste generated in sodium cooled removal in high shear mixing-assisted oxidative-adsorptive
fast breeder reactors[J]. Journal of Radioanalytical & Nuclear desulfurization of diesel[J]. Journal of Cleaner Production, 2018,
Chemistry, 2013, 295(2): 1531-1535. 178: 468-475.
[17] Du Zhihui (杜志辉), Jia Mingchun (贾铭椿), Men Jinfeng (门金凤), [24] Hao Yanling (郝艳玲), Fan Fuhai (范福海). Adsorption kinetic of
et al. Preparation of polyacrylonitrile-potassium cobalt/titanium copper from aqueous solution on palygorskite clay[J]. Journal of the
hexacyanaferrate (II) spherical composite adsorbents and their chinese ceramic society (硅酸盐学报), 2010, 38(11): 2138-2142.
+
adsorption properties for Cs [J]. Atomic Energy Science and [25] Qin C, Ren W, Wei M. Adsorption kinetic studies of calcium ions
Technology (原子能科学技术), 2014, 48(1): 14-22. onto Ca-selective zeolite[J]. Desalination, 2010, 259(1): 156-160.