Page 135 - 《精细化工》2020年第1期
P. 135
第 1 期 程晓琪,等: 蚕丝/聚氧化乙烯复合固态聚合物电解质 ·121·
生长并防止电池发生短路危险。 3 结论
(1)以天然蚕丝为刚性结构,将 PEO 和锂盐浇
铸在蚕丝上,制备 Silk-PEO-SPE 隔膜。制得的复合
固态电解质与原始的 PEO-SPE 相比有着优异的机
械强度和电化学窗口,拉伸强度达到 10 MPa,电化
–4
学窗口达到 4.6 V,60 ℃时电导率为 3.20×10 S/cm。
(2)将 Silk-PEO-SPE 隔膜与正极片、锂片在手
套箱中组装成全固态纽扣式电池,60 ℃下具有良好
的倍率性能和较好的充/放电性能,在 0.2、0.5、1.0、
2.0、3.0 C 电流密度下放电比容量达到 157、152、
116、24、5 mA∙h/g。并且,在 1.0 C 的电流密度下
表现出优异的循环性能,在 100 次的循环后,放电
比容量依然能达到 113 mA∙h/g,容量保持率达到
97%,具有较好的应用前景。
参考文献:
[1] Fan L, Wei S, Li S, et al. Recent progress of the solid-state electrolytes
for high-energy metal-based batteries[J]. Advanced Energy Materials,
2018, 8(11): 1702657.
[2] Nam Y J, Oh D Y, Jung S H, et al. Toward practical all-solid-state
lithium-ion batteries with high energy density and safety: Comparative
study for electrodes fabricated by dry- and slurry-mixing processes[J].
图 6 Silk-PEO-SPE 固态电池不同电流密度下的充电-放 Journal of Power Sources, 2018, 375: 93-101.
[3] Zhang Shu (张舒), Wang Shaofei (王少飞), Ling Shigang (凌仕刚),
电曲线(a)和循环曲线(b) et al. Fundamental scientific aspects of lithium ion batteries(X)—
Fig. 6 Charge-discharge curves (a) and cycle curves (b) All-solid-state lithium-ion batteries[J]. Energy Storage Science and
for Silk-PEO-SPE solid state batteries at different Technology (储能科学与技术), 2014, 3(4): 376-394.
current density [4] Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium
polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26):
10038-10069.
2.7 机理分析 [5] Xue Z, He D, Xie X. Poly (ethylene oxide)-based electrolytes for
lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,
蚕丝膜具有丰富的多孔结构,PEO 通过物理填 3(38): 19218-19253.
充到蚕丝膜的孔隙中,达到物理复合的效果。其复 [6] Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for
high-performance lithium ion batteries[J]. Energy Storage Materials,
合机理如下所示。 2016, 5: 139-164.
[7] Yuan F, Chen H Z, Yang H Y, et al. PAN-PEO solid polymer
electrolytes with high ionic conductivity[J]. Materials Chemistry and
Physics, 2005, 89(2/3): 390-394.
[8] He W, Cui Z, Liu X, et al. Carbonate-linked poly (ethylene oxide)
polymer electrolytes towards high performance solid state lithium
batteries[J]. Electrochimica Acta, 2017, 225: 151-159.
[9] Zhao Y, Huang Z, Chen S, et al. A promising PEO/LAGP hybrid
electrolyte prepared by a simple method for all-solid-state lithium
batteries[J]. Solid State Ionics, 2016, 295: 65-71.
[10] Chen L, Li Y, Li S P, et al. PEO/garnet composite electrolytes for
solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-
in-ceramic”[J]. Nano Energy, 2018, 46: 176-184.
[11] Jinisha B, Anilkumar K M, Manoj M, et al. Development of a novel
type of solid polymer electrolyte for solid state lithium battery
applications based on lithium enriched poly (ethylene oxide) (PEO)/
poly (vinyl pyrrolidone) (PVP) blend polymer[J]. Electrochimica
Acta, 2017, 235: 210-222.
[12] Tanaka R, Sakurai M, Sekiguchi H, et al. Lithium ion conductivity in
polyoxyethylene/polyethylenimine blends[J]. Electrochimica Acta,
PEO 中含有丰富的醚键,与蚕丝结构中的酰胺 2001, 46(10/11): 1709-1715.
基团可以形成氢键化作用,提高 PEO 和蚕丝的相容 [13] Zhou Q, Zhang J, Cui G. Rigid-flexible coupling polymer electrolytes
toward high-energy lithium batteries[J]. Macromolecular Materials and
性。锂盐中的锂离子既可以和 PEO 络合,也可以与 Engineering, 2018, 303(11): 1800337.
蚕丝上的极性基团络合,在两种材料间扮演着交联 [14] Zhang J, Yue L, Hu P, et al. Taichi-inspired rigid-flexible coupling
cellulose-supported solid polymer electrolyte for high-performance
点的作用,可进一步提高复合材料的稳定性,从而 lithium batteries[J]. Scientific Reports, 2014, 4: 6272.
赋予电池较好的循环稳定性。 (下转第 167 页)