Page 201 - 《精细化工》2020年第11期
P. 201
第 11 期 唐清海,等: CdS/Zn-Fe LDO 复合材料光催化降解孔雀石绿 ·2347·
的进行逐渐分解,60 min 时 MG 降解率为 98.2%。 in Mo 2C/CdS composite for enhanced photocatalytic H 2 evolution
under visible light irradiation[J]. ChemSusChem, 2016, 9: 820-824.
对该溶液进行高分辨质谱分析,主要的碎片离子峰 [6] ZHANG L J, LI S, LIU B K, et al. Highly efficient CdS/WO 3
photocatalysts: Z-scheme photocatalytic mechanism for their enhanced
为 m/Z=313。该分子离子峰是 MG 的母离子峰 m/Z= photocatalytic H 2 evolution under visible light[J]. ACS Catalysis,
+
+
+
329(C 23 H 25 N 2 )脱去碎片 CH 3 (C 23 H 25 N 2 – H – CH 3 ) [7] 2014, 4: 3724-3729.
LI Q, GUO B D, YU J G, et al. Highly efficient visible light-driven
的产物,表明溶液中 MG 含有的—CH 3 在光催化过 photocatalytic hydrogen production of CdS-cluster-decorated
graphene nanosheets[J]. Journal of the American Chemical Society,
程中易被敏化和破坏,MG 被降解。 2011, 133: 10878-10884.
[8] YUE D T, QIAN X F, KAN M, et al. Sulfurated[NiFe]-based layered
double hydroxides nanoparticles as efficient co-catalysts for
photocatalytic hydrogen evolution using CdTe/CdS quantumdots[J].
Applied Catalysis B: Environmental, 2017, 209: 155-160.
[9] KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS 2 layers
anchored exfoliated reduced graphene oxide nanosheet hybrid as a
highly efficient cocatalyst for CdS nanorods towards enhanced
photocatalytic hydrogen production[J]. Applied Catalysis B:
Environmental, 2017, 212: 7-14.
[10] ZHANG K, KIM J K, PARK B, et al. Defect induced epitaxial
growth for efficient solar hydrogen production[J]. Nano Lett, 2017,
17(11): 6676-6683.
[11] ZHANG J Y,WANG Y H,JIN J,et al. Efficient visible-light
photocatalytic hydrogen evolution and enhanced photostability of
core/shell CdS/g-C 3N 4 nanowires[J]. ACS Applied Materials &
Interfaces, 2013, 5(20): 10317-10324.
[12] LYU H J, MA L, ZENG P, et al. Synthesis of floriated ZnFe 2O 4 with
porous nanorod structures and its photocatalytic hydrogen production
图 9 可见光降解 MG 的紫外-可见吸收光谱图 under visible light[J]. Journal of Materials Chemistry, 2010, 20(18):
Fig. 9 UV-Vis absorption spectra of MG by visible 3665-3672.
photocatalytic degradation [13] LIU B J, LIX Y, ZHAO Q D, et al. Self-templated formation of
ZnFe 2O 4 double-shelled hollow microspheres for photocatalytic
degradation of gaseous o-dichlorobenzene[J]. Journal of Materials
Chemistry A, 2017, 5(19): 8909-8915.
3 结论 [14] LI B Y, YU X, YU X L, et al. Graphene quantum dots decorated
ZnO-ZnFe 2O 4 nanocages and their visible light photocatalytic
用煅烧 CdS/Zn-Fe LDH 的方法,制备了 activity [J]. Applied Surface Science, 2019, 478(1): 991-997.
[15] CHEN X, LIU Y T, XIA X N, et al. Popcorn balls-like ZnFe 2O 4-ZrO 2
CdS/Zn-Fe LDO 复合材料,并对其进行降解孔雀石 microsphere for photocatalytic degradation of 2, 4-dinitrophenol[J].
Applied Surface Science, 2017, 407(15): 470-478.
绿的研究。CdS/Zn-Fe LDO 的光催化活性高于纯 [16] YAO Y J, CAI Y N, LU F, et al. Magnetic ZnFe 2O 4-C 3N 4 hybrid for
photocatalytic degradation of aqueous organic pollutants by visible
CdS、Zn-Fe LDO,且 CdS/Zn-Fe LDO(1∶1)的光 light[J]. Industrial & Engineering Chemistry Research, 2014, 53(44):
催化活性最大。可见光照 60 min,20 mg CdS/Zn-Fe 17294-17302.
[17] YANG Q, WANG S N, CHEN F, et al. Enhanced visible-light-driven
LDO(1∶1)对质量浓度为 20 mg/L 的孔雀石绿的 photocatalytic removal of refractory pollutants by ZnFe mixed metal
oxide derived from layered double hydroxide[J]. Catalysis
光降解率为 98.2%。同时,RhB、MB、CV、MO 均 Communications, 2017, 99(1): 15-19.
[18] HU X D (胡晓丹), XU X Q (徐小齐), CHEN C W (程传伟), et al.
可被其光催化降解。该复合材料制备方法简单,既 Synthesis and characterization of CdS nanocrystals[J]. Journal of
增强了 CdS 对可见光的吸收强度,又降低了光生电 Nanjing University of Aeronautics &Astronautics (南京航空航天大
学学报), 2009, 41(3): 418-422.
子与空穴的复合率,提高了 CdS 的光催化活性,为 [19] TIAN Z M (田志茗), CHANG Y (常悦). Preparation of ZnFe 2O 4 and
its photocatalytic activity[J]. Journal of Synthetic Crystals (人工晶
CdS 基半导体材料在降解有机染料中的实际应用提 体), 2019, 48(10): 1891-1897.
[20] HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO 3/g-C 3N 4
供了可行性。但 CdS/Zn-Fe LDO 复合材料的制备方 composites with enhanced hotocatalytic activity[J]. Dalton
法仍需继续研究,需解决 Zn-Fe LDO 团聚现象、CdS Transactions, 2013, 42(24): 8606-8616.
[21] LI M J (李梦佳), TUO X J (妥小军), LI X M (李小妹), et al.
形貌、尺寸等问题,期望进一步提高复合材料的光 Photocatalytic degradation of crystal violet using BiVO 4/MIL-100(Fe)
composites[J]. Fine Chemicals (精细化工), 2020, 37(1): 33-38.
催化活性,实现太阳光下对染料废水的光降解。 [22] GAO W (高伟), HE J (何杰), ZHANG X M (张晓梅). Layered
bimetallic hydroxides and their application[J]. University Chemistry
(大学化学), 2012, 27(4): 38-45.
参考文献: [23] GOH K H, LIM T T, DONG Z L. Application of layered double
[1] DI G L, ZHU Z L, HUANG Q H, et al. Targeted modulation of hydroxides for removal of oxyanions: A review[J]. Water Reaearch,
g-C 3N 4 photocatalytic performance for pharmaceutical pollutants in 2008, 42(6/7): 1343-1368.
water using Zn-Fe LDH derived mixed metal oxides: Structure- [24] WU Z H (武正簧), LIU J (刘捷). Coating the TiO 2 thin film on the
activity and mechanism[J]. Science of the Total Environment, 2019, active carbon with CVD and photo-catalytic degradation of acid
650(2): 1112-1121. violet red[J]. Chinese Journal of Spectroscopy Laboratory (光谱实验
[2] YIN W Z, WANG W Z, ZHOU L, et al. CTAB-assisted synthesis of 室), 2007, 24(5): 855-858.
monoclinic BiVO 4 photocatalyst and its highly efficient degradation [25] HUANG H (黄华), WEI Y W (魏雨薇), WANG W Y (王婉悦), et al.
of organic dye under visible-light irradiation[J]. Journal of Hazardous Preparation of novel magnetic Mn 0.6Zn 0.4 Fe 2O 4@CdS
Materials, 2010, 173(1/2/3): 194-199. nanocomposite photocatalysts and its properties of adsorption and
[3] CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven photocatalysis[J]. Acta Scientiae Circumstantiae(环境科学学报),
photocatalytic hydrogen production on CdS/Cu 7S 4/g-C 3N 4 ternary 2020, 40(1): 128-137.
heterostructures[J]. ACS Applied Materials & Interfaces, 2018, 10(24): [26] CHEN D H (陈德恒). Organic structure analysis[M]. Beijing:
20404. Science Press (科学出版社), 1985: 172.
[4] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride [27] CHEN Y B (陈益宾), WANG X X (王绪绪), FU X Z (付贤智), et al.
nanosheets for improved photocatalytic activities[J]. Advanced Photocatalytic degradation process of azodyecongored in aqueous
Functional Materials, 2012, 22: 4763-4770. solution[J]. Chinese Journal of Catalysis (催化学报), 2005, 26(1):
[5] MA B J, XU H J, LIN K, et al. Mo 2C as non-noble metal cocatalyst 37-42.