Page 201 - 《精细化工》2020年第11期
P. 201

第 11 期                   唐清海,等: CdS/Zn-Fe LDO 复合材料光催化降解孔雀石绿                             ·2347·


            的进行逐渐分解,60 min 时 MG 降解率为 98.2%。                        in Mo 2C/CdS composite for enhanced photocatalytic H 2 evolution
                                                                   under visible light irradiation[J]. ChemSusChem, 2016, 9: 820-824.
            对该溶液进行高分辨质谱分析,主要的碎片离子峰                             [6]   ZHANG L  J,  LI S,  LIU B K,  et al. Highly efficient CdS/WO 3
                                                                   photocatalysts: Z-scheme photocatalytic mechanism for their enhanced
            为 m/Z=313。该分子离子峰是 MG 的母离子峰 m/Z=                        photocatalytic H 2  evolution  under visible light[J]. ACS Catalysis,
                                      +
                                                +
                        +
            329(C 23 H 25 N 2 )脱去碎片 CH 3 (C 23 H 25 N 2 – H – CH 3 )  [7]   2014, 4: 3724-3729.
                                                                   LI Q, GUO B D, YU J G, et al. Highly efficient visible light-driven
            的产物,表明溶液中 MG 含有的—CH 3 在光催化过                            photocatalytic hydrogen production of CdS-cluster-decorated
                                                                   graphene nanosheets[J]. Journal of the American Chemical Society,
            程中易被敏化和破坏,MG 被降解。                                      2011, 133: 10878-10884.
                                                               [8]   YUE D T, QIAN X F, KAN M, et al. Sulfurated[NiFe]-based layered

                                                                   double hydroxides nanoparticles as efficient co-catalysts for
                                                                   photocatalytic hydrogen evolution using CdTe/CdS quantumdots[J].
                                                                   Applied Catalysis B: Environmental, 2017, 209: 155-160.
                                                               [9]   KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS 2 layers
                                                                   anchored exfoliated reduced graphene  oxide nanosheet hybrid as a
                                                                   highly efficient cocatalyst for CdS nanorods towards  enhanced
                                                                   photocatalytic hydrogen  production[J]. Applied Catalysis B:
                                                                   Environmental, 2017, 212: 7-14.
                                                               [10]  ZHANG  K, KIM J K, PARK B,  et al.  Defect induced epitaxial
                                                                   growth for efficient solar hydrogen production[J]. Nano Lett, 2017,
                                                                   17(11): 6676-6683.
                                                               [11]  ZHANG J Y,WANG Y H,JIN J,et al. Efficient  visible-light
                                                                   photocatalytic hydrogen evolution and enhanced photostability of
                                                                   core/shell CdS/g-C 3N 4  nanowires[J].  ACS Applied Materials &
                                                                   Interfaces, 2013, 5(20): 10317-10324.
                                                               [12]  LYU H J, MA L, ZENG P, et al. Synthesis of floriated ZnFe 2O 4 with
                                                                   porous nanorod structures and its photocatalytic hydrogen production
                图 9   可见光降解 MG 的紫外-可见吸收光谱图                         under visible light[J]. Journal of Materials Chemistry, 2010, 20(18):
            Fig. 9    UV-Vis absorption  spectra of  MG by visible   3665-3672.
                    photocatalytic degradation                 [13]  LIU B J, LIX  Y,  ZHAO Q D,  et al. Self-templated formation  of
                                                                   ZnFe 2O 4  double-shelled hollow microspheres for  photocatalytic
                                                                   degradation of gaseous  o-dichlorobenzene[J]. Journal of Materials
                                                                   Chemistry A, 2017, 5(19): 8909-8915.
            3   结论                                             [14]  LI B Y,  YU X, YU X L,  et al. Graphene quantum dots decorated
                                                                   ZnO-ZnFe 2O 4  nanocages and their visible light photocatalytic
                 用煅烧 CdS/Zn-Fe LDH 的方法,制备了                         activity [J]. Applied Surface Science, 2019, 478(1): 991-997.
                                                               [15]  CHEN X, LIU Y T, XIA X N, et al. Popcorn balls-like ZnFe 2O 4-ZrO 2
            CdS/Zn-Fe LDO 复合材料,并对其进行降解孔雀石                          microsphere for photocatalytic degradation of 2, 4-dinitrophenol[J].
                                                                   Applied Surface Science, 2017, 407(15): 470-478.
            绿的研究。CdS/Zn-Fe LDO 的光催化活性高于纯                       [16]  YAO Y J, CAI Y N, LU F, et al. Magnetic ZnFe 2O 4-C 3N 4 hybrid for
                                                                   photocatalytic degradation of aqueous organic pollutants by visible
            CdS、Zn-Fe LDO,且 CdS/Zn-Fe LDO(1∶1)的光                   light[J]. Industrial & Engineering Chemistry Research, 2014, 53(44):
            催化活性最大。可见光照 60 min,20 mg CdS/Zn-Fe                     17294-17302.
                                                               [17]  YANG Q, WANG S N, CHEN F, et al. Enhanced visible-light-driven
            LDO(1∶1)对质量浓度为 20 mg/L 的孔雀石绿的                          photocatalytic removal of refractory pollutants by ZnFe mixed metal
                                                                   oxide derived from layered double hydroxide[J]. Catalysis
            光降解率为 98.2%。同时,RhB、MB、CV、MO 均                          Communications, 2017, 99(1): 15-19.
                                                               [18]  HU X D (胡晓丹), XU X Q (徐小齐), CHEN C W (程传伟), et al.
            可被其光催化降解。该复合材料制备方法简单,既                                 Synthesis and characterization of CdS nanocrystals[J].  Journal of
            增强了 CdS 对可见光的吸收强度,又降低了光生电                              Nanjing University of Aeronautics &Astronautics (南京航空航天大
                                                                   学学报), 2009, 41(3): 418-422.
            子与空穴的复合率,提高了 CdS 的光催化活性,为                          [19]  TIAN Z M (田志茗), CHANG Y (常悦). Preparation of ZnFe 2O 4 and
                                                                   its photocatalytic  activity[J]. Journal of Synthetic Crystals (人工晶
            CdS 基半导体材料在降解有机染料中的实际应用提                               体), 2019, 48(10): 1891-1897.
                                                               [20]  HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO 3/g-C 3N 4
            供了可行性。但 CdS/Zn-Fe LDO 复合材料的制备方                         composites with enhanced hotocatalytic activity[J]. Dalton
            法仍需继续研究,需解决 Zn-Fe LDO 团聚现象、CdS                         Transactions, 2013, 42(24): 8606-8616.
                                                               [21]  LI M J (李梦佳), TUO X J (妥小军), LI X M (李小妹),  et al.
            形貌、尺寸等问题,期望进一步提高复合材料的光                                 Photocatalytic degradation of crystal violet using BiVO 4/MIL-100(Fe)
                                                                   composites[J]. Fine Chemicals (精细化工), 2020, 37(1): 33-38.
            催化活性,实现太阳光下对染料废水的光降解。                              [22]  GAO W (高伟), HE J (何杰), ZHANG X M (张晓梅). Layered
                                                                   bimetallic hydroxides and their application[J]. University Chemistry
                                                                   (大学化学), 2012, 27(4): 38-45.
            参考文献:                                              [23]  GOH K H, LIM T T, DONG Z L. Application  of  layered double
            [1]   DI G L,  ZHU  Z L, HUANG Q  H,  et al. Targeted modulation  of   hydroxides for removal of oxyanions: A review[J]. Water Reaearch,
                 g-C 3N 4 photocatalytic performance for pharmaceutical pollutants in   2008, 42(6/7): 1343-1368.
                 water using Zn-Fe LDH derived mixed metal oxides: Structure-   [24]  WU Z H (武正簧), LIU J (刘捷). Coating the TiO 2 thin film on the
                 activity and mechanism[J]. Science of the Total Environment, 2019,   active carbon with CVD and photo-catalytic degradation of acid
                 650(2): 1112-1121.                                violet red[J]. Chinese Journal of Spectroscopy Laboratory (光谱实验
            [2]   YIN W Z, WANG W Z, ZHOU L, et al. CTAB-assisted synthesis of   室), 2007, 24(5): 855-858.
                 monoclinic BiVO 4 photocatalyst and its highly efficient degradation   [25]  HUANG H (黄华), WEI Y W (魏雨薇), WANG W Y (王婉悦), et al.
                 of organic dye under visible-light irradiation[J]. Journal of Hazardous   Preparation  of  novel  magnetic  Mn 0.6Zn 0.4   Fe 2O 4@CdS
                 Materials, 2010, 173(1/2/3): 194-199.             nanocomposite photocatalysts and its  properties  of adsorption and
            [3]   CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven   photocatalysis[J].  Acta Scientiae Circumstantiae(环境科学学报),
                 photocatalytic hydrogen  production on CdS/Cu 7S 4/g-C 3N 4 ternary   2020, 40(1): 128-137.
                 heterostructures[J]. ACS Applied Materials & Interfaces, 2018, 10(24):   [26]  CHEN  D H (陈德恒). Organic structure analysis[M]. Beijing:
                 20404.                                            Science Press (科学出版社), 1985: 172.
            [4]   NIU P, ZHANG  L L, LIU G,  et al. Graphene-like carbon  nitride   [27]  CHEN Y B (陈益宾), WANG X X (王绪绪), FU X Z (付贤智), et al.
                 nanosheets for improved photocatalytic activities[J]. Advanced   Photocatalytic degradation process of azodyecongored in aqueous
                 Functional Materials, 2012, 22: 4763-4770.        solution[J]. Chinese Journal of Catalysis (催化学报), 2005, 26(1):
            [5]   MA B J, XU H J, LIN K, et al. Mo 2C as non-noble metal cocatalyst   37-42.
   196   197   198   199   200   201   202   203   204   205   206