Page 216 - 《精细化工》2020年第11期
P. 216

·2362·                            精细化工   FINE CHEMICALS                                 第 37 卷

            3    结论                                                ultra-low permeability reservoirs[M]. Beijing: Petroleum Industry
                                                                   Press (石油工业出版社), 2012: 125-138.
                                                               [9]   MAO J C, YANG X J, CHEN  Y  N,  et al. Viscosity reduction
                 通过对 HPG 进行疏水改性,并与双子表面活                            mechanism in high temperature of a Gemini viscoelastic surfactant
                                                                   (VES) fracturing fluid and effect of counter-ion salt (KCl) on its heat
            性剂形成复合低伤害压裂液体系,该复合压裂液体                                 resistance[J]. Journal of Petroleum Science and Engineering, 2018,
                                                                   164(1): 89-95.
            系具有良好的耐温耐剪切性和携砂性,且界面性质                             [10]  ZHANG Y, MAO J C, XU T, et al. Preparation of a novel fracturing
                                                                   fluid with good heat and shear resistance[J]. RSC Advances, 2019,
            优异,对储层基质渗透率损害和裂缝导流能力损害                                 9(3): 1199-1207.
                                                               [11]  CREWS J B, GOMAA A M. Nanoparticle associated surfactant
            较小。                                                    micellar fluids: An alternative to crosslinked polymer systems[C]//
                                                                   SPE International Oilfield Nanotechnology Conference and Exhibition,
                (1)以溴代十四烷对 HPG 进行了疏水改性,红                           2012:1-11.
            外光谱和热重分析表明,HPG 通过醚化反应成功接                           [12] ZHANG L (张林), SHEN Y D (沈一丁), SUI M W (隋明炜), et al.
                                                                   Synthesis and application  of  organic boron crosslinker  YJ-P for
            入了较长的疏水碳链,且改性产物 HMHPG 热稳定                              low-concentration guanidine gum fracturing fuids[J]. Fine Chemicals
                                                                   (精细化工), 2013, 30(1): 104-107.
            性良好。                                               [13]  KOSTENUK N H, BROWNE D J. Improved proppant transport
                                                                   system for slickwater shale fracturing[C]//Canadian Unconventional
                (2)以质量分数 0.15% HMHPG 和 0.8%双子表                     Resources and International Petroleum Conference, 2010: 1-10.
                                                               [14]  ZHAO J Z, YANG B, MAO J C,  et al. A novel hydrophobic
            面活性剂 HBGS 配制了复合压裂液,该压裂液耐温                              associative polymer by RAFT-MADIX copolymerization for fracturing
            耐剪切性和动态携砂性良好。在 18~90  ℃、剪切速                            fluids with  high thermal stability[J].  Energy & Fuels,  2018, 32(3):
                                                                   3039-3051.
                   –1
            率 170 s 条件下测试 2 h,黏度仍保持在 109 mPa·s                 [15]  LI Y (李杨), GUO J C (郭建春), WANG S B (王世彬). Research
                                                                   status and development trend of low-damage fracturing fluid[J].
            以上;复合溶液表现为典型的黏弹性流体,室内实                                 Modern Chemical Industry (现代化工), 2018, 38(9): 20-22.
                                                               [16]  MA G Y (马国艳), LI X R (李小瑞), LIU J (刘锦), et al. Performance
            验下携砂性良好,模拟裂缝不同部位支撑剂质量分                                 of hydrophobic associatingpolymer/surfactant fracturing fluid[J].
                                                                   Fine Chemicals (精细化工), 2018, 35(4): 676-682.
            数差值在 5%以内。                                         [17]  PANMAI S, PRUDHOMME R K,  PEIFFER D G.  Rheology of
                (3)在双子表面活性剂作用下,复合压裂液破                              hydrophobically modified polymers with spherical and rod-like
                                                                   surfactant micelles[J]. Colloids and Surfaces A: Physicochemical and
            胶液表现出较低的油/水界面张力(0.9 mN/m);同                            Engineering Aspects, 1999, 147(1): 3-15.
                                                               [18]  COUILLET I, HUGHES T, MAITLAND G, et al. Synergistic effects
            时储层岩石的水相接触角由 71.6°减小至 33.7°,亲                          in aqueous solutions of mixed wormlike micelles and hydrophobically
                                                                   modified polymers[J]. Macromolecules, 2005, 38 (12): 5271-5282.
            水性显著增强。                                            [19]  XU C M (徐春梅). A study of hydrophobicallyassociating water-soluble
                                                                   polymer/surface active agent compound system applied in  low
                (4)受益于较低的油/水界面张力和增强的储层                             damage fractruing fluid[D]. Chengdu: Southeast Petroleum Institute
            亲水性,复合压裂液滤液造成的储层基质油相渗透                                 (西南石油学院), 2004.
                                                               [20]  JIANG G C, JIANG Q H, SUN Y L, et al. Supramolecular-structure-
            率损失率仅为 9.1%,水相渗透率损失率为 20.2%;                           associating weak gel of wormlike micelles of erucoylamidopropyl
                                                                   hydroxy sulfobetaine and hydrophobically  modified polymers[J].
            复合压裂液较低的聚合物浓度和易于破胶的物理交                                 Energy & Fuels, 2017, 31(5): 4780-4790.
                                                               [21]  GUPTA D V S, CARMAN P S. Associative polymer system extends
            联方式,有效减少了破胶液对裂缝导流能力的损害,                                the temperature range of surfactant gel frac fluids[C]//SPE International
                                                                   Symposium on Oilfield Chemistry, 2011: 1-8.
            实验测试最终导流能力损害率仅为 5.3%。                              [22]  ALVAREZ J O, SCHECHTER D  S. Wettability alteration and
                下一步将深入研究该压裂液性质影响因素及其                               spontaneous imbibition in unconventional liquid reservoirs by
                                                                   surfactant additives[J]. SPE Reservoir Evaluation & Engineering,
            作用规律,为矿场应用提供基础和参考。                                     2017, 20(1): 107-117.
                                                               [23]  AUSTAD T, MATRE B, MILTER J, et al. Chemical flooding of oil
                                                                   reservoirs 8. Spontaneous oil expulsion from oil- and water-wet low
            参考文献:                                                  permeable chalk material by imbibition of aqueous  surfactant
                                                                   solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering
            [1]   LIANG T  B, ZHOU F J, LU J,  et al. Evaluation of wettability   Aspects, 1998, 137(1): 117-129.
                 alteration and IFT reduction  on mitigating water blocking for   [24]  YANG J, CUI  W X, GUAN B S,  et al. Supramolecular fluid of
                 low-permeability oil-wet rocks after hydraulic fracturing[J]. Fuel,   associative polymer and viscoelastic surfactant for  hydraulic
                 2017, 209(6): 50-60.                              fracturing[J]. SPE Production & Operations, 2016, 31(4): 318-324.
            [2]   ROSHAN  H, Al-YASERI A Z, SARMADIVALEH M,  et al. On   [25]  CHEN F (陈锋). Preparation and properties of modified guar for
                 wettability of  shale rocks[J]. Journal of Colloid and Interface   gracturing[D]. Beijing: China University of Mining & Technology
                 Science, 2016, 475(10): 4-11.                     (中国矿业大学), 2015.
            [3]   LIANG T B, ACHOUR S H, LONGORIA R A, et al. Flow physics   [26]  LI Q D (李谦定), MENG F N (孟凡宁), YANG T Q (杨添麒), et al.
                 of how surfactants  can reduce water blocking caused by hydraulic   Synthesis and application research of N, N′- bis(octadecyl dimethyl)-
                 fracturing in low permeability reservoirs[J]. Journal of  Petroleum   1,2-dibromide-dihexyl ammonium salt[J]. Fine Chemicals (精细化
                 Science and Engineering, 2017, 157(6): 31-42.     工), 2014, 31(12): 1452-1456, 1494.
            [4]   PENG H, RAN Q Q, YONG L, et al. Performance analysis and flow   [27]  National Energy Administration. The  evaluation measurement for
                 regime identification of fractured forizontal wells in tight oil   properties  of water-based fracturing fluid: SY/T  5107—2016[S].
                 reservoirs[C]//SPE Kingdom of Saudi Arabia Annual Technical   Beijing: Petroleum Industry Press (石油工业出版社), 2016: 5-15.
                 Symposium and Exhibition, 2017: 1-8           [28]  National Energy Administration. Determination  of the strength of
            [5]   CHANG Y R, LU H J, CHEN B C, et al. Multi-fracture stimulation   gels used for oil production—Test method on rheological parameters:
                 techniques make better wells in ultra-low permeability oil reservoirs   SY/T 6296—2013[S]. Beijing: Petroleum Industry Press (石油工业
                 [C]//SPE/AAPG/SEG  Unconventional  Resources  Technology  出版社), 2013: 3-5.
                 Conference, 2013: 1-10.                       [29]  National Development and Reform Commission. General technical
            [6]   TAHERI A, SAJJADIAN V. WAG performance in a low porosity and   specifications of fracturing  fluids: SY/T 6376—2008[S]. Beijing:
                 low permeability reservoir, Sirri-A Field, Iran[C]//SPE Asia Pacific   Petroleum Industry Press (石油工业出版社), 2008: 1-2.
                 Oil & Gas Conference and Exhibition, 2006: 1-12.     [30]  TABOR R F, GRIESER F, DAGASTINE R R, et al. The hydrophobic
            [7]   ZHANG K Y, ZHANG G D, LI Z J, et al. Laboratory evaluation of a   force: Measurements and methods[J]. Physical Chemistry Chemical
                 low pH and low  polymer concentration zirconium-CMHPG gel   Physics, 2014, 16(34): 18065-18075.
                 system for hydraulic fracturing[J]. Energy & Fuels, 2019, 33(10):   [31] WANG L (王璐). Large eddy simulation of turbulent drag-reducing
                 9720-9735.                                        flows of viscoelastic fluids[D]. Harbin: Harbin Institute of Technology
            [8]   ZHU T S (朱天寿), XU  Y G (徐永高). Fracturing technology for   (哈尔滨工业大学), 2015.
   211   212   213   214   215   216   217   218   219   220   221