Page 216 - 《精细化工》2020年第11期
P. 216
·2362· 精细化工 FINE CHEMICALS 第 37 卷
3 结论 ultra-low permeability reservoirs[M]. Beijing: Petroleum Industry
Press (石油工业出版社), 2012: 125-138.
[9] MAO J C, YANG X J, CHEN Y N, et al. Viscosity reduction
通过对 HPG 进行疏水改性,并与双子表面活 mechanism in high temperature of a Gemini viscoelastic surfactant
(VES) fracturing fluid and effect of counter-ion salt (KCl) on its heat
性剂形成复合低伤害压裂液体系,该复合压裂液体 resistance[J]. Journal of Petroleum Science and Engineering, 2018,
164(1): 89-95.
系具有良好的耐温耐剪切性和携砂性,且界面性质 [10] ZHANG Y, MAO J C, XU T, et al. Preparation of a novel fracturing
fluid with good heat and shear resistance[J]. RSC Advances, 2019,
优异,对储层基质渗透率损害和裂缝导流能力损害 9(3): 1199-1207.
[11] CREWS J B, GOMAA A M. Nanoparticle associated surfactant
较小。 micellar fluids: An alternative to crosslinked polymer systems[C]//
SPE International Oilfield Nanotechnology Conference and Exhibition,
(1)以溴代十四烷对 HPG 进行了疏水改性,红 2012:1-11.
外光谱和热重分析表明,HPG 通过醚化反应成功接 [12] ZHANG L (张林), SHEN Y D (沈一丁), SUI M W (隋明炜), et al.
Synthesis and application of organic boron crosslinker YJ-P for
入了较长的疏水碳链,且改性产物 HMHPG 热稳定 low-concentration guanidine gum fracturing fuids[J]. Fine Chemicals
(精细化工), 2013, 30(1): 104-107.
性良好。 [13] KOSTENUK N H, BROWNE D J. Improved proppant transport
system for slickwater shale fracturing[C]//Canadian Unconventional
(2)以质量分数 0.15% HMHPG 和 0.8%双子表 Resources and International Petroleum Conference, 2010: 1-10.
[14] ZHAO J Z, YANG B, MAO J C, et al. A novel hydrophobic
面活性剂 HBGS 配制了复合压裂液,该压裂液耐温 associative polymer by RAFT-MADIX copolymerization for fracturing
耐剪切性和动态携砂性良好。在 18~90 ℃、剪切速 fluids with high thermal stability[J]. Energy & Fuels, 2018, 32(3):
3039-3051.
–1
率 170 s 条件下测试 2 h,黏度仍保持在 109 mPa·s [15] LI Y (李杨), GUO J C (郭建春), WANG S B (王世彬). Research
status and development trend of low-damage fracturing fluid[J].
以上;复合溶液表现为典型的黏弹性流体,室内实 Modern Chemical Industry (现代化工), 2018, 38(9): 20-22.
[16] MA G Y (马国艳), LI X R (李小瑞), LIU J (刘锦), et al. Performance
验下携砂性良好,模拟裂缝不同部位支撑剂质量分 of hydrophobic associatingpolymer/surfactant fracturing fluid[J].
Fine Chemicals (精细化工), 2018, 35(4): 676-682.
数差值在 5%以内。 [17] PANMAI S, PRUDHOMME R K, PEIFFER D G. Rheology of
(3)在双子表面活性剂作用下,复合压裂液破 hydrophobically modified polymers with spherical and rod-like
surfactant micelles[J]. Colloids and Surfaces A: Physicochemical and
胶液表现出较低的油/水界面张力(0.9 mN/m);同 Engineering Aspects, 1999, 147(1): 3-15.
[18] COUILLET I, HUGHES T, MAITLAND G, et al. Synergistic effects
时储层岩石的水相接触角由 71.6°减小至 33.7°,亲 in aqueous solutions of mixed wormlike micelles and hydrophobically
modified polymers[J]. Macromolecules, 2005, 38 (12): 5271-5282.
水性显著增强。 [19] XU C M (徐春梅). A study of hydrophobicallyassociating water-soluble
polymer/surface active agent compound system applied in low
(4)受益于较低的油/水界面张力和增强的储层 damage fractruing fluid[D]. Chengdu: Southeast Petroleum Institute
亲水性,复合压裂液滤液造成的储层基质油相渗透 (西南石油学院), 2004.
[20] JIANG G C, JIANG Q H, SUN Y L, et al. Supramolecular-structure-
率损失率仅为 9.1%,水相渗透率损失率为 20.2%; associating weak gel of wormlike micelles of erucoylamidopropyl
hydroxy sulfobetaine and hydrophobically modified polymers[J].
复合压裂液较低的聚合物浓度和易于破胶的物理交 Energy & Fuels, 2017, 31(5): 4780-4790.
[21] GUPTA D V S, CARMAN P S. Associative polymer system extends
联方式,有效减少了破胶液对裂缝导流能力的损害, the temperature range of surfactant gel frac fluids[C]//SPE International
Symposium on Oilfield Chemistry, 2011: 1-8.
实验测试最终导流能力损害率仅为 5.3%。 [22] ALVAREZ J O, SCHECHTER D S. Wettability alteration and
下一步将深入研究该压裂液性质影响因素及其 spontaneous imbibition in unconventional liquid reservoirs by
surfactant additives[J]. SPE Reservoir Evaluation & Engineering,
作用规律,为矿场应用提供基础和参考。 2017, 20(1): 107-117.
[23] AUSTAD T, MATRE B, MILTER J, et al. Chemical flooding of oil
reservoirs 8. Spontaneous oil expulsion from oil- and water-wet low
参考文献: permeable chalk material by imbibition of aqueous surfactant
solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering
[1] LIANG T B, ZHOU F J, LU J, et al. Evaluation of wettability Aspects, 1998, 137(1): 117-129.
alteration and IFT reduction on mitigating water blocking for [24] YANG J, CUI W X, GUAN B S, et al. Supramolecular fluid of
low-permeability oil-wet rocks after hydraulic fracturing[J]. Fuel, associative polymer and viscoelastic surfactant for hydraulic
2017, 209(6): 50-60. fracturing[J]. SPE Production & Operations, 2016, 31(4): 318-324.
[2] ROSHAN H, Al-YASERI A Z, SARMADIVALEH M, et al. On [25] CHEN F (陈锋). Preparation and properties of modified guar for
wettability of shale rocks[J]. Journal of Colloid and Interface gracturing[D]. Beijing: China University of Mining & Technology
Science, 2016, 475(10): 4-11. (中国矿业大学), 2015.
[3] LIANG T B, ACHOUR S H, LONGORIA R A, et al. Flow physics [26] LI Q D (李谦定), MENG F N (孟凡宁), YANG T Q (杨添麒), et al.
of how surfactants can reduce water blocking caused by hydraulic Synthesis and application research of N, N′- bis(octadecyl dimethyl)-
fracturing in low permeability reservoirs[J]. Journal of Petroleum 1,2-dibromide-dihexyl ammonium salt[J]. Fine Chemicals (精细化
Science and Engineering, 2017, 157(6): 31-42. 工), 2014, 31(12): 1452-1456, 1494.
[4] PENG H, RAN Q Q, YONG L, et al. Performance analysis and flow [27] National Energy Administration. The evaluation measurement for
regime identification of fractured forizontal wells in tight oil properties of water-based fracturing fluid: SY/T 5107—2016[S].
reservoirs[C]//SPE Kingdom of Saudi Arabia Annual Technical Beijing: Petroleum Industry Press (石油工业出版社), 2016: 5-15.
Symposium and Exhibition, 2017: 1-8 [28] National Energy Administration. Determination of the strength of
[5] CHANG Y R, LU H J, CHEN B C, et al. Multi-fracture stimulation gels used for oil production—Test method on rheological parameters:
techniques make better wells in ultra-low permeability oil reservoirs SY/T 6296—2013[S]. Beijing: Petroleum Industry Press (石油工业
[C]//SPE/AAPG/SEG Unconventional Resources Technology 出版社), 2013: 3-5.
Conference, 2013: 1-10. [29] National Development and Reform Commission. General technical
[6] TAHERI A, SAJJADIAN V. WAG performance in a low porosity and specifications of fracturing fluids: SY/T 6376—2008[S]. Beijing:
low permeability reservoir, Sirri-A Field, Iran[C]//SPE Asia Pacific Petroleum Industry Press (石油工业出版社), 2008: 1-2.
Oil & Gas Conference and Exhibition, 2006: 1-12. [30] TABOR R F, GRIESER F, DAGASTINE R R, et al. The hydrophobic
[7] ZHANG K Y, ZHANG G D, LI Z J, et al. Laboratory evaluation of a force: Measurements and methods[J]. Physical Chemistry Chemical
low pH and low polymer concentration zirconium-CMHPG gel Physics, 2014, 16(34): 18065-18075.
system for hydraulic fracturing[J]. Energy & Fuels, 2019, 33(10): [31] WANG L (王璐). Large eddy simulation of turbulent drag-reducing
9720-9735. flows of viscoelastic fluids[D]. Harbin: Harbin Institute of Technology
[8] ZHU T S (朱天寿), XU Y G (徐永高). Fracturing technology for (哈尔滨工业大学), 2015.