Page 102 - 《精细化工》2020年第3期
P. 102
·520· 精细化工 FINE CHEMICALS 第 37 卷
表 3 不同来源 EHs 动力学拆分 rac-pCSO 制备 (R)-pCSO
Table 3 Kinetic resolution of rac-pCSO to prepare (R)-pCSO by various EHs
来源 催化方式 rac-pCSO/(mmol/L) 添加剂 时间/h ee s/% 产率/% E STY/〔g/(L·h)〕 文 献
VrEH3 Whole cell 20.0 Buffer 1.5 92.2 31.3 6.8 0.65 [7]
Kau2 Whole cell 3.5 5% Ethanol 0.5 >99.0 49.0 35.0 0.53 [8]
StEH Enzyme extract ① 4.0 1% DMSO 1.4 >99.0 50.0 70.0 0.22 [9]
StEH Enzyme extract ② 200.0 Buffer 18.0 >99.0 47.0 100.0 0.81 [10]
PvEH1 Z4X4-59 Whole cell 800.0 4% Tween-20 12.0 99.0 45.7 46.4 4.71 This study
①Expressed in E.coli;②Expressed in insect cells。
3 结论 [6] KOTIK1 M, ARCHELAS A, WOHLGEMUTH R, et al. Epoxide
hydrolases and their application in organic synthesis[J]. Current
Organic Chemistry, 2012, 16(4): 451-482.
本研究以 E. coli/pveh1 Z4X4-59 全细胞作为催化 [7] HU D, TANG C D, LI C, et al. Stereoselective hydrolysis of
剂,水解动力学拆分 rac-pCSO 高效制备(R)-pCSO, epoxides by reVrEH3, a novel Vignaradiata epoxide hydrolase with
high enantioselectivity or high andcomplementary regioselectivity[J].
主要结论如下: Agricultural and Food Chemistry, 2017, 65(45): 9862-9871.
(1)本文分析了 6 种非离子型表面活性剂对 E. [8] KOTIK M, STEPANEK V, GRULICH M, et al. Access to
coli/pveh1 Z4X4-59 全细胞催化特性的影响,以 50 g/L E. enantiopure aromatic epoxides and diols using epoxide hydrolases
derived from total biofilter DNA[J]. Journal of Molecular Catalysis
coli/pveh1 Z4X4-59 全细胞催化 300 mmol/L rac-pCSO,添 B: Enzymatic, 2010, 65(1-4): 41-48.
加 10%(体积分数)吐温-20 反应 10 min,全细胞 [9] Monterde M I, Lombard M, Archelas A, et al. Enzymatic transformations.
part 58: Enantioconvergentbiohydrolysis of styrene oxide derivatives
酶活力提高至原酶的 1.5 倍,对映选择性提高至原 catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron:
酶的 2.1 倍;在 25 ℃下 PvEH1 Z4X4-59 突变酶的半衰 Asymmetry, 2004, 15(18): 2801-2805.
[10] MANOJ K M, ARCHELAS A, BARATTI J, et al. Microbiological
期提高 2.3 倍;与缓冲液体系相比,E. coli/pveh1 Z4X4-59 transformations. part 45: A green chemistry preparative scale synthesis
催化 rac-pCSO 的底物初始浓度提高 3.2 倍。 of enantiopure building blocks of eliprodil:Elaboration of a high
substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic
(2)在最优反应条件下,吐温-20 的添加量为
resolution process[J]. Tetrahedron, 2001, 57(4): 695-701.
4%(体积分数),底物初始浓度为 800 mmol/L [11] CHEN W J, LOU W Y, ZONG M H. Efficient asymmetric hydrolysis
(123.7 g/L),E. coli/pveh1 Z4X4-59 全细胞的添加量 of styrene oxide catalyzed by mung beanepoxide hydrolases in ionic
liquid-based biphasic systems[J]. Bioresource Technology, 2012,
为 200 g/L,反应 12 h 后所获(R)-pCSO 的 ee s 和产率 115: 58-62.
分别为 99.0%和 45.7%,时空产率高达 4.71 g/(L·h)。 [12] HU D, WANG R, SHI X L, et al. Kinetic resolution of racemic
styrene oxide at a high concentration by recombinant Aspergillususamii
(3)反应体系放大至 100 mL,经硅胶过滤层析 epoxide hydrolase in an n-hexanol/buffer biphasic system[J]. Journal
纯化得到产物 4.5 g,总收率为 36.3%。 of Biotechnology, 2016, 236: 152-158.
[13] YE H H, HU D, SHI X L, et al. Directed modification of a novel
本文为生物合成(R)-pCSO 提供了高效的生物 epoxide hydrolase from Phaseolus vulgaris to improve its
催化剂,与其他化学和酶法合成相比具有更好的工 enantioconvergence towards styrene epoxides[J]. Catalysis
业应用潜力。 Communications, 2016, 87(5): 32-35.
[14] HU Die (胡蝶). Gene cloning, molecular modification of an epoxide
hydrolase from Aspergillususamii and its application in synthesis of
参考文献: chiral compounds[D]. Wuxi:Jiangnan University (江南大学), 2017.
[1] WIDERSTEN M.Protein engineering for development of new [15] CHEN Y A,ZHOU Y,QIN Y L, et al. Evaluation of the action of
hydrolytic biocatalysts[J]. Current Opinion in Chemical Biology, tween20 non-ionic surfactant during enzymatic hydrolysis of
2014, 21: 42-47. lignocellulose: Pretreatment, hydrolysis conditions andlignin structure[J].
[2] WU S, LI A, CHIN Y S, et al. Enantioselective hydrolysis of racemic Bioresource Technology, 2018, 269(1): 329-338.
and meso-epoxides with recombinant Escherichiacoli expressing [16] GONG P F, XU J H, TANG Y F, et al. Improved catalytic
epoxide hydrolase from Sphingomonas sp. HXN-200: Preparation of performance of Bacillus megaterium epoxide hydrolase in a medium
epoxides and vicinal diols in high ee and high concentration[J]. ACS containing tween-80[J]. Biotechnology Progress, 2003, 19(2): 652-654.
Catalysis, 2013, 3(4): 752-759. [17] KIM H S, LEE J H, PARK S H, et al. Biocatalytic preparation of
[3] KRAMER S D,BETZEL T, WU L J, et al. Evaluation of chiral epichlorohydrinsusing recombinant Pichia Pastoris expressing
C-11-Me-NB1 as a potential PET radioligand for measuring epoxide hydrolase of Rhodotorulaglutinis[J]. Biotechnology and
GluN2B-containing NMDA receptors, drug occupancy, and receptor Bioprocess Engineering, 2004, 9(1): 62-64.
cross talk[J]. Journal of Nuclear Medicine, 2018, 59(4): 698-703. [18] GARIDEL P, HOFFMANN C, BLUME A. A thermodynamic
[4] SAINI P, SAREEN D. An overview on the enhancement of analysis of the binding interaction between polysorbate 20 and 80 with
enantioselectivity and stability of microbial epoxide hydrolases[J]. human serum albumins and immunoglobulins:A contribution to
Molecular Biotechnology, 2017, 59(2/3): 98-116. understand colloidal protein stabilisation[J].Biophysical Chemistry,
[5] XU Y, JIA X, PANKE S, et al. Asymmetric dihydroxylation of aryl 2009, 143(1/2): 70-78.
olefins by sequential enantioselective epoxidation and regioselective [19] YUAN Feifei (袁飞飞), LI Hongmei (李红梅). Effects of protective
hydrolysis with tandem biocatalyst[J]. Chemical Communications, additives on thermostability of NAD kinase recombinanted in E.
2009, 12(1): 1481-1483. coli[J]. Fine Chemicals (精细化工), 2016, 33(12): 1344-1350.