Page 102 - 《精细化工》2020年第3期
P. 102

·520·                             精细化工   FINE CHEMICALS                                  第 37 卷

                                      表 3    不同来源 EHs 动力学拆分 rac-pCSO 制备 (R)-pCSO
                                Table 3    Kinetic resolution of rac-pCSO to prepare (R)-pCSO by various EHs
                 来源          催化方式       rac-pCSO/(mmol/L)  添加剂    时间/h   ee s/% 产率/%  E   STY/〔g/(L·h)〕  文  献
                VrEH3       Whole cell        20.0        Buffer    1.5   92.2  31.3  6.8    0.65       [7]
                 Kau2       Whole cell         3.5      5% Ethanol  0.5  >99.0  49.0  35.0   0.53       [8]
                 StEH     Enzyme extract ①     4.0       1% DMSO    1.4  >99.0  50.0  70.0   0.22       [9]
                 StEH     Enzyme extract ②   200.0        Buffer   18.0  >99.0  47.0  100.0   0.81     [10]
              PvEH1 Z4X4-59    Whole cell     800.0     4% Tween-20  12.0  99.0  45.7  46.4   4.71   This study
                 ①Expressed in E.coli;②Expressed in insect cells。

            3    结论                                            [6]   KOTIK1  M,  ARCHELAS  A,  WOHLGEMUTH  R, et al.  Epoxide
                                                                   hydrolases  and  their  application  in  organic  synthesis[J].  Current
                                                                   Organic Chemistry, 2012, 16(4): 451-482.
                 本研究以 E. coli/pveh1   Z4X4-59  全细胞作为催化         [7]   HU  D,  TANG  C  D,  LI  C,  et al.  Stereoselective  hydrolysis  of
            剂,水解动力学拆分 rac-pCSO 高效制备(R)-pCSO,                       epoxides by reVrEH3, a novel Vignaradiata epoxide hydrolase with
                                                                   high enantioselectivity or high andcomplementary regioselectivity[J].
            主要结论如下:                                                Agricultural and Food Chemistry, 2017, 65(45): 9862-9871.
                (1)本文分析了 6 种非离子型表面活性剂对 E.                      [8]   KOTIK  M,  STEPANEK  V,  GRULICH  M,  et al.  Access  to
            coli/pveh1 Z4X4-59  全细胞催化特性的影响,以 50  g/L  E.           enantiopure  aromatic  epoxides  and  diols  using  epoxide  hydrolases
                                                                   derived from total biofilter DNA[J]. Journal of Molecular Catalysis
            coli/pveh1 Z4X4-59  全细胞催化 300 mmol/L rac-pCSO,添        B: Enzymatic, 2010, 65(1-4): 41-48.
            加 10%(体积分数)吐温-20 反应 10  min,全细胞                    [9]   Monterde M I, Lombard M, Archelas A, et al. Enzymatic transformations.
                                                                   part 58: Enantioconvergentbiohydrolysis of styrene oxide derivatives
            酶活力提高至原酶的 1.5 倍,对映选择性提高至原                              catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron:
            酶的 2.1 倍;在 25 ℃下 PvEH1       Z4X4-59  突变酶的半衰           Asymmetry, 2004, 15(18): 2801-2805.
                                                               [10]  MANOJ  K  M,  ARCHELAS  A,  BARATTI  J,  et al.  Microbiological
            期提高 2.3 倍;与缓冲液体系相比,E. coli/pveh1          Z4X4-59      transformations. part 45: A green chemistry preparative scale synthesis
            催化 rac-pCSO 的底物初始浓度提高 3.2 倍。                           of  enantiopure  building  blocks  of  eliprodil:Elaboration  of  a  high
                                                                   substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic
                (2)在最优反应条件下,吐温-20 的添加量为
                                                                   resolution process[J]. Tetrahedron, 2001, 57(4): 695-701.
            4%(体积分数),底物初始浓度为 800  mmol/L                       [11]  CHEN W J, LOU W Y, ZONG M H. Efficient asymmetric hydrolysis
            (123.7  g/L),E. coli/pveh1 Z4X4-59  全细胞的添加量            of styrene oxide catalyzed by mung beanepoxide hydrolases in ionic
                                                                   liquid-based  biphasic  systems[J].  Bioresource  Technology,  2012,
            为 200 g/L,反应 12 h 后所获(R)-pCSO 的 ee s 和产率               115: 58-62.
            分别为 99.0%和 45.7%,时空产率高达 4.71 g/(L·h)。              [12]  HU  D,  WANG  R,  SHI  X  L,  et al.  Kinetic  resolution  of  racemic
                                                                   styrene oxide at a high concentration by recombinant Aspergillususamii
                (3)反应体系放大至 100 mL,经硅胶过滤层析                          epoxide hydrolase in an n-hexanol/buffer biphasic system[J]. Journal
            纯化得到产物 4.5 g,总收率为 36.3%。                               of Biotechnology, 2016, 236: 152-158.
                                                               [13]  YE H H, HU D, SHI X L, et al. Directed modification of a novel
                 本文为生物合成(R)-pCSO 提供了高效的生物                          epoxide  hydrolase  from  Phaseolus vulgaris  to  improve  its
            催化剂,与其他化学和酶法合成相比具有更好的工                                 enantioconvergence   towards   styrene   epoxides[J].   Catalysis
            业应用潜力。                                                 Communications, 2016, 87(5): 32-35.
                                                               [14]  HU Die (胡蝶). Gene cloning, molecular modification of an epoxide
                                                                   hydrolase from Aspergillususamii and its application in synthesis of
            参考文献:                                                  chiral compounds[D]. Wuxi:Jiangnan University (江南大学), 2017.
            [1]   WIDERSTEN  M.Protein  engineering  for  development  of  new   [15]  CHEN  Y  A,ZHOU  Y,QIN  Y  L,  et al.  Evaluation  of  the  action  of
                 hydrolytic  biocatalysts[J].  Current  Opinion  in  Chemical  Biology,   tween20  non-ionic  surfactant  during  enzymatic  hydrolysis  of
                 2014, 21: 42-47.                                  lignocellulose: Pretreatment, hydrolysis conditions andlignin structure[J].
            [2]   WU S, LI A, CHIN Y S, et al. Enantioselective hydrolysis of racemic   Bioresource Technology, 2018, 269(1): 329-338.
                 and  meso-epoxides  with  recombinant  Escherichiacoli  expressing   [16]  GONG  P  F,  XU  J  H,  TANG  Y  F,  et al.  Improved  catalytic
                 epoxide hydrolase from Sphingomonas sp. HXN-200: Preparation of   performance of Bacillus megaterium epoxide hydrolase in a medium
                 epoxides and vicinal diols in high ee and high concentration[J]. ACS   containing tween-80[J]. Biotechnology Progress, 2003, 19(2): 652-654.
                 Catalysis, 2013, 3(4): 752-759.               [17]  KIM  H  S,  LEE  J  H,  PARK  S  H,  et al.  Biocatalytic  preparation  of
            [3]   KRAMER  S  D,BETZEL  T,  WU  L  J,  et al.  Evaluation  of   chiral  epichlorohydrinsusing  recombinant  Pichia Pastoris  expressing
                 C-11-Me-NB1  as  a  potential  PET  radioligand  for  measuring   epoxide  hydrolase  of  Rhodotorulaglutinis[J].  Biotechnology  and
                 GluN2B-containing NMDA receptors, drug occupancy, and receptor   Bioprocess Engineering, 2004, 9(1): 62-64.
                 cross talk[J]. Journal of Nuclear Medicine, 2018, 59(4): 698-703.   [18]  GARIDEL  P,  HOFFMANN  C,  BLUME  A.  A  thermodynamic
            [4]   SAINI  P,  SAREEN  D.  An  overview  on  the  enhancement  of   analysis of the binding interaction between polysorbate 20 and 80 with
                 enantioselectivity  and  stability  of  microbial  epoxide  hydrolases[J].   human  serum  albumins  and  immunoglobulins:A  contribution  to
                 Molecular Biotechnology, 2017, 59(2/3): 98-116.   understand  colloidal  protein  stabilisation[J].Biophysical  Chemistry,
            [5]   XU Y, JIA X, PANKE S, et al. Asymmetric dihydroxylation of aryl   2009, 143(1/2): 70-78.
                 olefins by sequential enantioselective epoxidation and regioselective   [19]  YUAN Feifei (袁飞飞), LI Hongmei (李红梅). Effects of protective
                 hydrolysis  with  tandem  biocatalyst[J].  Chemical  Communications,   additives  on  thermostability  of  NAD  kinase  recombinanted  in  E.
                 2009, 12(1): 1481-1483.                           coli[J]. Fine Chemicals (精细化工), 2016, 33(12): 1344-1350.
   97   98   99   100   101   102   103   104   105   106   107