Page 121 - 《精细化工》2020年第3期
P. 121
第 3 期 童春杰,等: 苹果酸辅助水热合成 WO 3 及 WO 3 -CuCrO 2 的光催化性能 ·539·
60(3): 378-387. of WO 3[J]. Solar Energy Materials & Solar Cells, 2008, 92:
[10] BAI S L, ZHANG K W, SHU X, et al. Carboxyl-directed 1071-1076.
hydrothermal synthesis of WO 3 nanostructures and their [26] WANG Guiyun (王桂赟), LIU Xianping (刘先平), ZHAO Qian (赵
morphology-dependent gas-sensing properties[J]. Cryst Eng Comm, 茜), et al. Preparation of CuCrO 2-WO 3 and photocatalytic hydrogen
2014, 16(44): 10210-10217. production[J]. CIESC Journal (化工学报), 2014, 65(9): 3457-3463.
[11] YAO S Y, QU F Y, WANG G, et al. Facile hydrothermal synthesis of [27] YANG Huan (杨欢), WANG Guiyun (王桂赟), TIAN Weisong (田
WO 3 nanorods for photocatalysts and supercapacitors[J]. Journal of 伟松), et al. Hydrothermal synthesis and photocatalytic performance
Alloys & Compounds, 2017, 724: 695-702. of monoclinic phase WO 3[J]. Journal of Fuel Chemistry and
[12] AFIFY H H, HASSAN S A, OBAIDA M, et al. Preparation, Technology (燃料化学学报), 2018, 46(11): 1360-1368.
characterization, and optical spectroscopic studies of nanocrystalline [28] BENKO F A, KOFFYBERG F P. Preparation and opto-electronic
tungsten oxide WO 3[J]. Optics & Laser Technology, 2019, 111: properties of semiconducting CuCrO 2[J]. Materials Research
604-611. Bulletin, 1986, 21: 753-757.
[13] SU X T, XIAO F, LI Y N, et al. Synthesis of uniform WO 3 square [29] MORRISON S R. Electrochemistry at semiconductor and oxidized
nanoplates via an organic acid-assisted hydrothermal process[J]. metal electrodes[M]. Wu Huihuang (吴辉煌), Trans. Beijing: Science
Materials Letters, 2010, 64(10): 1232-1234. Press (科学出版社), 1988: 76-79.
[14] D'ARIENZO M, ARMELAO L, MARI C M, et al. Surface [30] SONG Lijia (宋立佳). Study on photocatalytic hydrogen production
interaction of WO 3 nanocrystals with NH 3 role of the exposed crystal performance of composite combustor combustion synthesis of
surfaces and porous structure in enhancing the electrical response[J]. CuCrO 2 and Its composite with WO 3[D]. Tianjin: Hebei University
RSC Advances, 2014, 4(22): 11012-11022. of Technology (河北工业大学), 2017.
[15] LIN S W, GUO Y X, LI X, et al. Glycine acid-assisted green [31] BOULOVA M, LUCAZEAU G. Crystallite nanosize effect on the
hydrothermal synthesis and controlled growth of WO 3 nanowires[J]. structural transitions of WO 3 studied by Raman spectroscopy[J].
Materials Letters, 2015, 152: 102-104. Journal of Solid State Chemistry, 2002, 167(2): 425-434.
[16] WEI S H, ZHAO J H, HU B X, et al. Hydrothermal synthesis and [32] DANIEL M F, DESBAT B, LASSEGUES J C. Infrared and raman
gas sensing properties of hexagonal and orthorhombic WO 3 study of WO 3 tungsten trioxides and WO 3·xH 2O tungsten trioxide
nanostructures[J]. Ceramics International, 2017, 43: 2579-2585. hydrates[J]. Journal of Solid State Chemistry, 1987, 67(2): 235-247.
[17] MIAO B, ZENG W, MU Y J, et al. Controlled synthesis of [33] PYPER K J, EVANS T C, BARTLETT B M. Synthesis of α-SnWO 4
monodisperse WO 3·H 2O square nanoplates and their gas sensing thin-film electrodes by hydrothermal conversion from crystalline
properties[J]. Applied Surface Science, 2015, 349: 380-386. WO 3[J]. Chinese Chemical Letters, 2015, 26(4): 474-478.
[18] WANG F G, VALENTIN C D, PACCHIONI G. Doping of WO 3 for [34] ZHAO Y, PAN K M, WEI S Z, et al. Template-free hydrothermal
photocatalytic water splitting: Hints from density functional theory[J]. synthesis of 3D hollow aggregate spherical structure WO 3
Journal of Physical Chemistry C, 2012, 116(16): 8901-8909. nano-plates and photocatalytic properties[J]. Materials Research
[19] JEON D, KIM N, BAE S, et al. WO 3/Conducting polymer Bulletin, 2018, 101: 280-286.
heterojunction photoanodes for efficient and stable [35] HU Donghu (胡栋虎), HE Yunqiu (贺蕴秋), LI Linjiang (李林江), et
photoelectrochemical water splitting[J]. ACS Applied Materials & al. Structure and properties of different crystal forms WO 3·0.
Interfaces, 2018, 10(9): 8036-8044. 33H 2O[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),
[20] LIU Y, MISHRA M, CHEN Y H, et al. On the processes of 2011, 27(1): 11-18.
photo-induced hydrogen generation from methanol solution by Ta 3N 5 [36] YANG Jiankui ( 杨建奎 ), ZHANG Wei ( 张薇 ). Organic
and WO 3[J]. International Journal of Hydrogen Energy, 2018, 43(54): chemistry[M]. Beijing: Chemical Industry Press (化学工业出版社),
23255-23261. 2015: 157-173.
[21] SONG L M, LIU D, ZHANG S J, et al. WO 3 cocatalyst improves [37] VOGT T, WOODWARD P M, HUNTER B A. The high-temperature
hydrogen evolution capacity of ZnCdS under visible light phases of WO 3[J]. Journal of Solid State Chemistry, 1999, 144(1):
irradiation[J]. International Journal of Hydrogen Energy, 2019, 44: 209-215.
16327-16335. [38] HEDA N L, AHUJA B L. Electronic properties and electron
[22] WU Yuqi (吴玉琪), LV Gongxuan (吕功煊), LI Shuben (李树本). momentum density of monoclinic WO 3[J]. Computational Materials
Preparation and photocatalytic activity of Nano-WO 3 powders[J]. Science, 2013, 72: 49-53.
Acta Chimica Sinica (化学学报), 2004, 62(12): 1134-1138. [39] LV X J, ZHOU S X, HUANG X, et al. Photocatalytic overall water
[23] TAHIR M B, NABI G, KHALID N R. Enhanced photocatalytic splitting promoted by SnO x-NiGa 2O 4 photocatalysts[J]. Applied
performance of visible-light active graphene-WO 3, nanostructures for Catalysis B: Environmental, 2015, 182: 220-228.
hydrogen production[J]. Materials Science in Semiconductor [40] FU Y J, ZHU C G, LIU C, et al. CoMn-S/CDs nanocomposite for
Processing, 2018, 84: 36-41. effective long wavelength visible-light-driven photocatalytic water
[24] WANG X W, LIU G, CHEN Z G, et al. Enhanced photocatalytic splitting[J]. Applied Catalysis B: Environmental, 2018, 226: 295-302.
hydrogen evolution by prolonging the lifetime of carriers in [41] TRUC N T T, HANH N T, NGUYEN D T, et al. Novel overall
ZnO/CdS heterostructures[J]. Chem Comm, 2009, 3452-3454. photocatalytic water splitting of tantalum nitride sensitized/protected
[25] HU C C, NIAN J N, TENG H. Electrodeposited p-type Cu 2O as by conducting polymers[J]. Journal of Solid State Chemistry, 2019,
photocatalyst for H 2 evolution from water reduction in the presence 269: 361-366.