Page 121 - 《精细化工》2020年第3期
P. 121

第 3 期                童春杰,等:  苹果酸辅助水热合成 WO 3 及 WO 3 -CuCrO 2 的光催化性能                       ·539·


                 60(3): 378-387.                                   of  WO 3[J].  Solar  Energy  Materials  &  Solar  Cells,  2008,  92:
            [10]  BAI  S  L,  ZHANG  K  W,  SHU  X,  et al.  Carboxyl-directed   1071-1076.
                 hydrothermal  synthesis  of  WO 3  nanostructures  and  their   [26]  WANG Guiyun (王桂赟), LIU Xianping (刘先平), ZHAO Qian (赵
                 morphology-dependent gas-sensing properties[J]. Cryst Eng Comm,   茜), et al. Preparation of CuCrO 2-WO 3 and photocatalytic hydrogen
                 2014, 16(44): 10210-10217.                        production[J]. CIESC Journal (化工学报), 2014, 65(9): 3457-3463.
            [11]  YAO S Y, QU F Y, WANG G, et al. Facile hydrothermal synthesis of   [27]  YANG Huan (杨欢), WANG Guiyun (王桂赟), TIAN Weisong (田
                 WO 3 nanorods for photocatalysts and supercapacitors[J]. Journal of   伟松), et al. Hydrothermal synthesis and photocatalytic performance
                 Alloys & Compounds, 2017, 724: 695-702.           of  monoclinic  phase  WO 3[J].  Journal  of  Fuel  Chemistry  and
            [12]  AFIFY  H  H,  HASSAN  S  A,  OBAIDA  M,  et al.  Preparation,   Technology (燃料化学学报), 2018, 46(11): 1360-1368.
                 characterization, and optical spectroscopic studies of nanocrystalline   [28]  BENKO  F  A,  KOFFYBERG  F  P.  Preparation  and  opto-electronic
                 tungsten  oxide  WO 3[J].  Optics  &  Laser  Technology,  2019,  111:   properties  of  semiconducting  CuCrO 2[J].  Materials  Research
                 604-611.                                          Bulletin, 1986, 21: 753-757.
            [13]  SU X T, XIAO F, LI Y N, et al. Synthesis of uniform WO 3 square   [29]  MORRISON  S  R.  Electrochemistry  at  semiconductor  and  oxidized
                 nanoplates  via  an  organic  acid-assisted  hydrothermal  process[J].   metal electrodes[M]. Wu Huihuang (吴辉煌), Trans. Beijing: Science
                 Materials Letters, 2010, 64(10): 1232-1234.       Press (科学出版社), 1988: 76-79.
            [14]  D'ARIENZO  M,  ARMELAO  L,  MARI  C  M,  et al.  Surface   [30]  SONG Lijia (宋立佳). Study on photocatalytic hydrogen production
                 interaction of WO 3 nanocrystals with NH 3 role of the exposed crystal   performance  of  composite  combustor  combustion  synthesis  of
                 surfaces and porous structure in enhancing the electrical response[J].   CuCrO 2 and Its composite with WO 3[D]. Tianjin: Hebei University
                 RSC Advances, 2014, 4(22): 11012-11022.           of Technology (河北工业大学), 2017.
            [15]  LIN  S  W,  GUO  Y  X,  LI  X,  et al.  Glycine  acid-assisted  green   [31]  BOULOVA  M,  LUCAZEAU  G.  Crystallite  nanosize  effect  on  the
                 hydrothermal synthesis and controlled growth of WO 3 nanowires[J].   structural  transitions  of  WO 3  studied  by  Raman  spectroscopy[J].
                 Materials Letters, 2015, 152: 102-104.            Journal of Solid State Chemistry, 2002, 167(2): 425-434.
            [16]  WEI S H, ZHAO J H, HU B X, et al. Hydrothermal synthesis and   [32]  DANIEL M F, DESBAT B, LASSEGUES J C. Infrared and raman
                 gas  sensing  properties  of  hexagonal  and  orthorhombic  WO 3   study  of  WO 3  tungsten  trioxides  and  WO 3·xH 2O  tungsten  trioxide
                 nanostructures[J]. Ceramics International, 2017, 43: 2579-2585.    hydrates[J]. Journal of Solid State Chemistry, 1987, 67(2): 235-247.
            [17]  MIAO  B,  ZENG  W,  MU  Y  J,  et al.  Controlled  synthesis  of   [33]  PYPER K J, EVANS T C, BARTLETT B M. Synthesis of α-SnWO 4
                 monodisperse  WO 3·H 2O  square  nanoplates  and  their  gas  sensing   thin-film  electrodes  by  hydrothermal  conversion  from  crystalline
                 properties[J]. Applied Surface Science, 2015, 349: 380-386.     WO 3[J]. Chinese Chemical Letters, 2015, 26(4): 474-478.
            [18]  WANG F G, VALENTIN C D, PACCHIONI G. Doping of WO 3 for   [34]  ZHAO  Y,  PAN  K  M,  WEI  S  Z,  et al.  Template-free  hydrothermal
                 photocatalytic water splitting: Hints from density functional theory[J].   synthesis  of  3D  hollow  aggregate  spherical  structure  WO 3
                 Journal of Physical Chemistry C, 2012, 116(16): 8901-8909.     nano-plates  and  photocatalytic  properties[J].  Materials  Research
            [19]  JEON  D,  KIM  N,  BAE  S,  et al.  WO 3/Conducting  polymer   Bulletin, 2018, 101: 280-286.
                 heterojunction   photoanodes   for   efficient   and   stable   [35]  HU Donghu (胡栋虎), HE Yunqiu (贺蕴秋), LI Linjiang (李林江), et
                 photoelectrochemical  water  splitting[J].  ACS  Applied  Materials  &   al.  Structure  and  properties  of  different  crystal  forms  WO 3·0.
                 Interfaces, 2018, 10(9): 8036-8044.               33H 2O[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),
            [20]  LIU  Y,  MISHRA  M,  CHEN  Y  H,  et al.  On  the  processes  of   2011, 27(1): 11-18.
                 photo-induced hydrogen generation from methanol solution by Ta 3N 5   [36]  YANG  Jiankui  ( 杨建奎 ),  ZHANG  Wei  ( 张薇 ).  Organic
                 and WO 3[J]. International Journal of Hydrogen Energy, 2018, 43(54):   chemistry[M]. Beijing: Chemical Industry Press (化学工业出版社),
                 23255-23261.                                      2015: 157-173.
            [21]  SONG L M, LIU D, ZHANG S J, et al. WO 3 cocatalyst improves   [37]  VOGT T, WOODWARD P M, HUNTER B A. The high-temperature
                 hydrogen  evolution  capacity  of  ZnCdS  under  visible  light   phases  of  WO 3[J].  Journal  of  Solid  State  Chemistry,  1999,  144(1):
                 irradiation[J].  International  Journal  of  Hydrogen  Energy,  2019, 44:   209-215.
                 16327-16335.                                  [38]  HEDA  N  L,  AHUJA  B  L.  Electronic  properties  and  electron
            [22]  WU  Yuqi  (吴玉琪),  LV  Gongxuan  (吕功煊),  LI  Shuben  (李树本).   momentum density of monoclinic WO 3[J]. Computational Materials
                 Preparation  and  photocatalytic  activity  of  Nano-WO 3  powders[J].   Science, 2013, 72: 49-53.
                 Acta Chimica Sinica (化学学报), 2004, 62(12): 1134-1138.     [39]  LV X J, ZHOU S X, HUANG X, et al. Photocatalytic overall water
            [23]  TAHIR  M  B,  NABI  G,  KHALID  N  R.  Enhanced  photocatalytic   splitting  promoted  by  SnO x-NiGa 2O 4  photocatalysts[J].  Applied
                 performance of visible-light active graphene-WO 3, nanostructures for   Catalysis B: Environmental, 2015, 182: 220-228.
                 hydrogen  production[J].  Materials  Science  in  Semiconductor   [40]  FU Y J, ZHU C G, LIU C, et al. CoMn-S/CDs nanocomposite for
                 Processing, 2018, 84: 36-41.                      effective  long  wavelength  visible-light-driven  photocatalytic  water
            [24]  WANG  X  W,  LIU  G,  CHEN  Z  G,  et al.  Enhanced  photocatalytic   splitting[J]. Applied Catalysis B: Environmental, 2018, 226: 295-302.
                 hydrogen  evolution  by  prolonging  the  lifetime  of  carriers  in   [41]  TRUC  N  T  T,  HANH  N  T,  NGUYEN  D  T,  et al.  Novel  overall
                 ZnO/CdS heterostructures[J]. Chem Comm, 2009, 3452-3454.     photocatalytic water splitting of tantalum nitride sensitized/protected
            [25]  HU  C  C,  NIAN  J  N,  TENG  H.  Electrodeposited  p-type  Cu 2O  as   by conducting polymers[J]. Journal of Solid State Chemistry, 2019,
                 photocatalyst for H 2 evolution from water reduction in the presence   269: 361-366.
   116   117   118   119   120   121   122   123   124   125   126